Letter/Documents-Gallery

(Most of these reproductions are reproductions of the original documents in chronological order.)






P

JET PROPULSION LABORATORY TECHNICAL MEMO #312-118

July 11, 1961

AUTHOR: M., Minovich

SUBJECT: An Alternative Method for the Determination of Elliptic and Hyperbolic
Trajectories

DISTRIBUTION: Section 312 Engineers, J. F. Scott, W. Scholey

A bound particle moving in the gravitational field of a "stationary" celestial
D
object will have an elliptic trajectory. Its period P is given by P = 2n 3—

where W = GM; G being the gravitational couétant, and M being the mass of the
celestial object setting up the field. It is well known that if two points, P and

Q, lie on a general conic trajectory, -the time required for the particle to traverse
i ~~ — —
the arc P Q is dependent only on the semi-major axis a of the conic, FP + FQ

where F is a focus of the conic and the distance between P and Q. Let us denote

ry = FP, r, = FQ and c = PQ. Consider the problem of finding an ellipse passing

through two specified points, P and Q, and one specified focus F,

Now the definition of an ellipse can be stated as the locus of points the sum of
whose distances from two fixed points (called foci)is constant., We may assume with-

* ;
out loss of generality that T,> Ty Thus if F is the other focus, it must satisfy

— — [
the equations PF + By = QF + Py o= 2a, Consequently, if PF = 2a - Ty
pu— *
and QF = 2a - Ty F will be a second focus. These points are easily obtained by

considering families of circles about P and Q with radii 2a - r, and 2a - Ty

1

respectively. The intersections of these families determines a set of pairs of
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points (I"*,'ﬁ"*) each of which can be the second focus, Consequer;tly, there are two
different ellipses which satisfy the conditions of the problem, It is clear that
if the radii 2a-r1, 2&*1‘2 are too small, the circles will not intersect. | Hence,
there exists a minimum value of a, say a such that the circles intersect in

only one point. Since this intersection must occur on PQ, we have 2am - Ty

+ Zam - I, =C. Thus letting-%(rl + r2 +¢) = s, we have Qam = %(rl + T, +c) = s,
Since the kinetic energy of the particle at P of unit mass is uf% - %é) where

b =-F§, it is clear that this will be minimum if a = a. Thus the unique ellipse,
having a semi-major axis of a = a ., can be called a minimum energy ellipse.

It can be shown (see R. Battin, The Determination of Round-Trip Planetary
Reconnaissance Trajectories; ARS Journal/Space Sciences; pages 550-52) that when the
vacant foci is at F*, the time T required for the particle to traverse the elliptic

N
arc P Q is
(1) T = -2 [(a - sin a) - (P - sin ﬁ)]

8

3= = ~a
= V'"g; sin-% =Y %EE . If the vacant focus is at F , the time T

nﬂu

niR

where sin

no

can be expressed as

(2) ’fzf_—%;g[(a-sina)+(i5-ainﬁ5)]
If we set Xy = 1- gy X, = 1- §g'g'and make use of the trigonometric identities

E e n . =1
sin g’ = V31 - cos ®) and sin(cos_lx) = Ji e ; cos iy = 2 - 8in X

equations (1) and (2) can be expressed as

; _
(3) P o= \fE (Vl-xz & sin_lx- Vl-xz - sin_lx i

1) 2 2 1 2
- ;

(4) T = '3* g X+ Y1 = x22 ¥ gin™ X, + ¥1 o le P e 2
Ifg = a the two ellipses are coincident and T = E: This can be shown analytically

: 8
by substituting a = a_ = 38 in (3) and (4) noting that in this case x=1-58 =-1

2

and sin-l("l) = -sin_l l= = gu Thus it is clear from (3) and (4) that TeT

where the equality holds only when a = a. Let the expressions on the right side of

equations (3) and (4) be denoted by f(a) and %Ia), respectively, so that T = f(a)

and'%’= ?(a). Omitting the details, one easily finds
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S ,4: _[_L’EL
Gy da¢ _ 2 fla) . L g(a c:)’1---x2 -s,f_.l-:xlg |+ %,
da 2 a J;E 1+x, 1+:in1 R = !,;;\
RS ) R ((( W2 \/1"’31%
da = 2 & wde 1+ x, 5. i
all l
W dr ) . & E(s_c)\/l"" Ji _8-¢ 3 f
2 4 e 1+
s 8 a3p. . \/1 »—x 1 \[1 - x22

Now it is clear on physical grounds that f(a)) 0 and ﬂf‘(a) >0. From (5)
f'(a)—? - 00 as a—> a and from (6) ?‘(a)—>+ oo as a— am. Hence the two curves
(T, a) and ("f"- a) are joined at a = am such that the total curve C has a well
defined tangent line for all values of a where f and F are defined (i.e., am4 a).
In order to simplify an analytical investigation of C let us consider values of

a 1in the closed interval am<: a g Ty + Tye Since am - 1}- 8 = %(rl + r, + ¢) and

cgry+ry, this interval can be expressed as % (rl + r2) £ac Ty + e From

A !
equation (6) since s - ¢ = -l-(r1 g c) Z 0 ﬂf“(a)) 0. Thus this upper half of

C increases with a. For the lower half of C where T is given by f(a) it is
2

convenient to consider Q_fé‘_ . Consider the expression

da
% i =i
14+
(8) % . xg
8 - C
s e
l—xl 1
1+ x ¢1 2
18
Sincex]_:l-% and x2=1-s = weobtams_a(l-xl)ands-c_a(l-xz)

Thus (8) may be written as

} e
1- ./l-x \}1+x 1-12 '\/1-]:2 - \/1-1( 1+x1

% 1-x 1—x1

el 1l-x
4%, Vi1- \f 1
l-x2 1-x2-l l-x 1+x

2
-X, t % = I
el ke e 1 >

=
[
i
»
'
i
—
=
a
)8

(9)
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2 302 02 2 (¢} C
Now 1=-1x, = 1-(1""5") = 1—(xl+;‘) = 1-11—;(2x1+ =)
r,4+r,+c¢ r. +r
2x+~9-==2—g§’-+£=2-—1—-—%--—-+9=2--—]’——.Hence
1 a a a a a a
r. +r r T
max (2x; +$) = 2.2 L1 pin(2x +az2.—t2 _ g
a r. +r l1 a r. o+
1 2 1 2
2
Thus 2x1 +-§-20 and we conclude that
(10) \/i - xlz l- x12
1~ x,2 2 o, & il
2 (l-xl)-a(2x1+a)
From L2 -'—(rl + r2) > 0 we write using above results
S~C s
1_?:2-&(23—0):1-3 ; I = Xy + X
: g 2
g x, = X 2 (x2 + xl) (x2 - xl) =x,=-%,
‘ 2 2
" o e R Ry
T xz(l-x2)};xl(l-xl)
. X 1l -
5 f"l-?zl
1 1

With this result and (10) we obtain, since (8) is equal to (9), the important

inequality
1 - x 1 1-x 1;
mdles =liae) =g G g e T
2 1-x > 1 l-x 1
which can be written as
e xz 1l - 11 ] s =-c

(s - ¢c)

= G ——rtt - > > 0
1+x, 1+x "1-::21 ”’1-52 =

Employing this result in equation (7) we find

2
af >0 a < a

daz o
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Since g—z- ~h =0 88 aE Ve may now conclude that the lower half of C for values

of a in am <ac< rl + T, will be convex from below, Thus the curve C will take on

the general shape of

Suppose a particle is moving in an elliptic trajectory about a gravitating body of
mass M (i.e., the particle is in free fall motion but bound in an orbit about the

e
r

body). If one specifies two points y = 0P and '§; = 66; which lies on the tra-
jectory, and the time T taken for the particle to pass from ;; to F}, one--and only
one-~-trajectory exists which satisfies these conditions, (provided T is greater than
some minimum value To)' We consider two possible cases:

(1) Te{a ) (11) T>T(a )

If T< T(am) we consider two sub-cases:

(a) T(%m)>ﬂ?>T(r1 + r2)

(b) T(r +r2)>T

=
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In practice, it turns out that case (i) is more important since short flight times
are desirable, Now as a increaaes,l the kinetic energy of the particle increases,
hence the sub-case (b) above will be unlikely. Consequently, we consider a method
which, for case (a), will always yield a sequence gak? converging to the desired
value a corresponding to the prescribed flight time T, First, choose an initial

value of a,say a,such that T(am) >T(ao)‘>T.

7 P4l
A P g

T(a 7 S Sy g

f(ﬁk) - T
=tan©® = tan(n -~ @F) = -tan @ = -f‘(ak)
ak{_l - B.K
Hence f(ak) -7 or
f'(a % T %ed
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f(ak) - T
(1) Ml T e T f'(aki

The sequence {ak} will necessarily converge to the desired value a because of

the convexity of the lower half of C in the intervsl & £ 8 5 F. & Bee IT

il
case (b) is true, one may still apply (11) if it is found by investigating the sign
of f" in a neighborhood of a that the method yielding {ak% will be convergent.
In a similar manner, it is easy to see that case ii presents no added difficulty

and (11) may also be used to calculate the semi-major axis a by appropriate

substitutions.
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k+1 k+1
If {gk} is convergent to a then the following argument holds for either case (i)

We now consider the error E in the k+l th iterate. E = fa - B‘k+ll‘

or (ii). In dealing with case (ii) one replaces f(a) by f(a). Now by equation

(ll) we have

e ™ Ia "ak+1'

But we may write

f(e) - T
a - ak + ";:TEET-H

T

i

f(a) = £(a) + (a-a,) £'(a) + (a-ak) £"(a,) + ...
r(a) + (a-a) £'(a ¥ha-a )? £({ )

or
T

where Qk lies between a, and a. Hence

k
T - £(a) 2 f"(gk)
£'(a, . (a-ak) " %(a'ak) £'(a,

Thus

f"(é J

=]
!

' 2
w1 = | (a8 - (a-a) - Ha-a) E

o 52 . i
= ¥(a-a ) . (g K
Hence since ak—">a
(12) B R 713: I-I;—;((-i:«g

"
Since %—%ﬁ{%% is a constant, this shows that the error in a is approximately

k+1
proportional to the square of the error in a- Thus we should expect rapid con-

vergence,

After determining the semi-major axis a with sufficient accuracy, the trajectory

will be completely determined by finding the corresponding value of thé.eccentricity

€. This is obtained by making use of the dependence of € on a, set up by the initial

condition of requiring F to be a focus and P and Q to lie on the ellipse. It can
* ~%
be shown (see above reference, page 549) that if the second focus if F or F

the corresponding values of the latus rectum are given by
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1 li‘% (s-—rl) (a-rz)] ain E“ENE
1 [i%(s-rl) (s-—r2)] sin2 E—E—E

respectively. Making use of the relation 1 = a(l -62) and introducing x., and

1.
X, defined above, these equations can be written as
{ 5% %
2 o 2 2
(13) €= 11w 2 (s - rl) {a = r2) (1 XX, + Vi-x') Viex 2}
= 2. 2 2 ) %
(14) £ % (1 - 02 (s - rl) (s - r2) (1 - X)Xy = \{l-x i \/l-x 2}

Thus if the given value of T is such that T > T(am) then after determining a with
sufficient accuracy by (11) with f(a) replaced by ?(a), the eccentricity gof the
elliptic orbit is given by (14). If T< T(am) one uses (13) after finding a by (11).
Before considering hyperbolic trajectories, it is important to know that a
solution of the above problem {having initial conditions ¥, —1"’ . —1?2 and T prescribed)
exists, Clearly if T and —f?l’ "rz, are chosen so that ,—;- is sufficiently large then,
since maximum l”‘?f 2 -E"whereh\? is the velocity of the particle, the particle may

be required to have a kinetic energy such that it cannot be in a bound state. Now

since this kinetic energy is given by p.('% - %‘;), if T« T(am) then as a-—>m the

Fain
path P Q is traversed such that lim f(a) = T exists, and that o< T < f(a)
a—>00 o o
for all a < a<o. Consequently, if the prescribed value of T is such that

m =

T < To, no elliptic trajectory is possible and the solution of the above problem
does not exist. This critical value To may be obtained by employing a device known

as L'Hospital's rule. This rule for calculating limits states that

lim F%t) _ lim  F'(t) if F(t)—>0 as t—lo and c(t)=>0 as tt .
t—>t  G(t) T ottt G (t
) 0

If we make the change of variable %’-—- a‘} , f(a) becomes

1 g Ty

2 -1 £ - B -1
i i - 1 = R
tj\ﬁz {\/1 X, + sin x, Vi x| - sin xl}

where X, = 1l - st2 and X, = 1 - fs-c)tz. Hence as a-— 00, t— 0 = to and we set

TR g
Mt) = Vl-—x22 e X, = Vl-le - %)

a(t) = \/;: £,
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-2 (=)

Thus 1im T _ 1lim FLig ¥
a=»®  t-o

l-x2 l-xl
T T 2 s\ Tia
2 1

TECHNICAL MEMO #312-118

3 Vet

By a re-application of the rule we obtain

e o
dm T lim  _1 {s-—c i (O i P e o [ o, e
a-s®m  t-Do l+x 4t o o Tl+x, A4t { S —

3 \[E 2 \ 1-1{2 Vl+12 1 '\/],-.xl Vi."'xl ;
7 2
lim } -4(s-c) t PRS- ot SERSER
t—30 r— S22 e 2
3V (14x,) V1-x", 3y (1%, ) Viex®)
Now 1lim X, = lim X, = 1 hence
t—>o0 t—>o
: 2 . 2
lim T _ -2(s-¢)” _ lim t = 25 . 1lim t
a~»mw - — t-—y0 S ot s
3\ 1 Vix? 3yl Vl—-xz
2 1
lim t
Let L1 = by 5 . Then
1-x 1 e
f. 2
L lim 1 _ lim Vi
1 t—0 4y ,2 )% (—2x.) 9% t—>o0  2xst
b5 1 ek
dt
f""”’?
B EET R
28 k=% t i 25L1
Thus we obtain L1 = ::1:' . In a similar manner we find letting
V28
L2 = lim —
Y1-x >
!
V2(s—c)
Consequently we obtain
2 2
T = lmT = %-5-: = - -—;—-(S'f_z S
A > 00 Vie \/2s Vi \[2(5—-0)
cos) 1= A (Vo Vee))
3V2u
Hence if the prescribed T is such that T< 3—2—;_ (\-’"33 e \‘;(s-c)’j ) an elliptical/
H

trajectory will be impossible,
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We turn now to the case when the prescribed value of T is such that an elliptic
trajectory is impossible. That is to say when T < To' Iﬁ this case, we must con-
sider hyperbolic trajectories., The trajectory will be parabolic if T = To‘ It
will be shown that when the semi-major axis a of a hyperbolic trajectory (with
vacant focus F*) increases indefinitely the corresponding time of flight approaches

To’ and the path becomes parabolic, We proceed as before specifying P and Q to

—

lie on the path with‘?l = 65, T, = 0Q with O the center of an attractive body of
mass M which, of course, is at a focus F of the hyperbolic path, Since the field
is attractive, P and Q must both lie on the concave branch of the hyperbola with

F its nearest focus. Hence if F¥ is a second focus

e ¥

e
PF - ¥y = QFr - r, = 2a,

according to the definition of a hyperbola which we take to be the locus of points
the difference of whose distances from two fixed points (foci) is constant. Thus

—_— —
P = Z2a+r QF = 2a + r

1 2

Hence the vacant focl can be described as the intersection of families of circles

about P and Q with radii 2a + Ty and 2a + Tos respectively,
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These circles will intersect in two points (FT, ’fi‘f). Unlike the elliptic case, the
minimum value of a = 0. In this case one vacant focus ‘f‘: coincides with F, The
other'f‘: is such that 35 bisects -E-"Fu: and hence the path P?l is PQ and corresponds
to an infinite velocity. The flight time T in this case must, of course, be O.

The path corresponding to’F“'F: = F is PF to FQ. These cases, of course, are
unrealized. Hence there exists two possible hyperbolic paths having the same semi-~
major axis a corresponding to the vacant foci FT or ‘i"f. We observe from the figure
that the path with vacant focus at E* has greater eccentricity € than the eccentri-
city EJ of the path with vacant focus at 'T'S"* €7

~
The time required to traverse the path fa when the vacant focus is at F or

*
F was expressed by Battin as

T =G_3 [(sinh a - @) - (sinh 6 - 8) |

=
i
|

[(sinh a -a)+ (sinh P - B) ]

where sinh = = \\‘gT s sinhg- = \/:25;_0 , corresponding to paths having vacant focus

nlR

* it . . 8 8=C .
at F or F , respectively. Thus since ey >0 w2 o T < 8 2 0. Also since

in this case sinh @ > @, sinh B > B, it is clear that T <

T, which we expect by

observing the figure. Employing the identities, sinh +x = V¥(cosh x-1) ,

2 i
coshzx - sinhzx T v bk (cosh-'lx) = Vx°-1 for «x >1, the above expressions

can be written as

3 e -
v 2 = =
T \/';“ [ ¥y, -1 - cosh 1y1 - \/:,'22 -1 + cosh - Y5 ]

I

B 1
3 e — P
e \ 2 = 2 =
Tzé[yl-lwcoshlyl+ yz-l—coshlyE]
where ¥i = 1k +§ v Yy = 1+ g;_c » Let the right-hand sides of these equations

be denoted by h(a) and g(a), respectively. Thus

2
(16) n(a) =\/é—— [Vyz w1 - -GoEET v, - Vya - 1+cosh™t ¥, ]z T

L 2
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h(a) = \/ﬁ"[ 21

Omitting the details, we find

dhga)

.

(17)

-1
1 - cosh y, +

1

: h
(18) a h(a) = 2.8l = s
(19) gé(i)- w BElA) 3%,@ 4 L
au

Vs~ 1~

c)

{-(s-cJ

TECHNICAL MEMO #312-118

c:ossh':l'y2 ] = T

2

-1 [y, =1
Yo . ,'Y]
y2+1 y1+1
Vgrh 2 T
yz-l-l yl+1

We now consider the limits of the equations @8 a—o0 and a—>mw, In doing this

we shall make use of the expansion for coah'll.

COSh-lx = lOg 21( "-2-.1_2-% %. 12 - %'%.%‘ 12 - esavw (I)l)
2x 4x 6x
lim h(a) = 1im{a\/; A +E) - f+ 1im{a\/a— (cosh'lyz-oosh"ly)}
a 1
a-3 0 /
2
i 1im{a\/; "W A= -1}
V 2 Y2
=lim{\(a-'(a+a)-a }+ lin{a \/a log -
. : ik
1,11 sy 1. d,dpnde ol
+22(2 ol 2)+2 4’4(4""4)“"---
g V3 i - %3
2
- lim{\/; "/(a+s-c) -a.2]
. Y,
= 0 + 1im{a\/; log'""l- 0 since
4
yi = l+§—-’7cn and y, = 1+§§£'-—7m as a—»o0
2 8=-C
lim g e Hm  l4=2" . a+8-c¢ s=cC
a—3o0 " 1 a—>0 % = 1im sogaRs . Hence
1+ =
a
lim h(a) = 0 as expected.
a—0

From the above results we may write

-lim{a\/a_ (1og 2 y, + log 2 7,)]

-1im{a \/; log 4 ¥y ¥ ]

1lim Tl(a)
a—=>0

alim{a Va log ¥y ¥ }
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Now lim y,y, = lin%l + E-) {1+ gi—q)} = lim gj%) . Hence

lim Tl(a) = - lim[a\/; log i(%'-ﬁ)}= lim?a \/a— log azJ
a

a—>0
i ‘/“" a a
= 2 llm{ a log a} But a"—>1 as a-—>o. Consequently

lim h(a) =0 as expected,
a-—»o0

We now find 1lim h'(a)

a -0
y-—i— yi=1
lim h'(a) = %lim %ﬁl 4 lim)'—l—" (s-c)y/ 2+1 - 8 1 7 }
a—>0 a-—>0 Vap 3 5

[}

L3 R [\/ N | e = ]
1im \/; iy 1-1 - cosh ¥y = v Y -1 + cosh Y,

2
[ (s-0) e \/Ei ]}

+

limi\{_1
% [lim\[:z:( @2 - a2 . \f(a+s—c)§ i ) ]

]

+ lim L ‘(s -c - 8) since
Vau
—~ <1 <4 ¥ =1
lim Va (cosh Yy, - cosh yl) = 0 as shown above and = 1—3‘1,
830 2
‘Yl -1
—1 as a—ro
Yo + 1
' 3_
.. lim h'(a) = lim \/— fa = lesn) J 3 = £ B
a—s0 \/;._,LL
1
£ = ldm + 00
a0 \/Eu
Since 1im h(a) = 0 and h(a) < h(a), 1lim h'(a) = + oo implies
a—>0 5 a—30
o~
lim h'(a) = + 00
a-—30
1 1
We now compute lim h(a). Let T oA Then
a—r 00
lim h(a) = 1lim e % [ V y2 -1 - cosh_ly - Vy2 -1 + cosh_ly ]}
) i 1 1 2 2
a—00 t—>o0 \/E

Employing L'Hospital's rule with

/ ' N, N -
Plt) = \’Yzl—l - cosh~l o > y2 - + cosh1y2
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mr

1
~% 5 dy; -+ dy
4aF ' — —2
lin h(a) = lim _dt nm*(y D 2y G- WA - 30, R
a—ron t-o0 dC - 5
| at 3Vt
L. i

1...
- 11m(2s\/ ” ) -
y1+1 Yot 3\(;1:
= lim :._t{ 23\/ 1 - 2(s-c) }

s (3\/; t)

d
= lim dyl \f
- +l dt

‘/ - W \/Vz"l M Yo~k
- +l dt yo-1 i yo+l

t—70
3\/3
= lim c]szt ( fs-c) (\[
t—0 \/-— ¥yl \f 2
1 2 S £ t
= = 2s  lim -2(s-c) lim
3& t—o \/ 1 t—>o \(y22_1
- 1 - 252 L1 -2(3-(:)2 L2
3y
t ; %
where Li: = X L, = lim
1 ’ 2
>0 ‘/Y21_1 a-»0 |/y22*_1
- i . 1
%m0 ey
2 [2 -
r < LA
= lim = ‘= 1im = e
¥y 28t 2s t 2s Ll
s 1
. L = T
1 ‘/ 2s
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; 1
In a gimilar manner we find L, = . Hence we obtain
e Vlz(s-c)
2 2
liu h(a) = 2 28 2(s-c)
A 00 EJU-_ \/2_5 \j2(s-c)
o B (Y s - \(s-c)a) or
3V 20
lim h(a) = 2
a ~00
We now calculate lim ’}\;(a). Let us choose -}E= a."]r so that as a—Yw. t—0 and
a~00
apply L'Hopital's rule with
~ - e =l 2 -1
F = \/3r_1~1 - cosh ¥y Y 2-l - cosh Yo
E = \[J.-h t)
Thus
lim h(a) = lim F = lim F'
a—> o0 t—>0 G tvo o
' dy dy. -+ dy dy
. 2 j| 1 1 2 2 1
= lim {%(y 1)2y + ¥y ,-1) 2y -
_ 2 1 1 dt e 41 . 2 2 dt [ dt 2
t=»0 ‘gyalﬂl y22-1 3kt
2la) dy, dy.,
lim h{a) = 1lim ——
a—>00 by [ A (yy - 1) + dt (v, - U} 31\[5 2
P 3.2
y 1"1 y 2"'1
Lo | Y s
= 1im ( 23 \/ 1 ¥ 2(5-‘0) \ 2 1_
t-»o y1+l y2+l 3
d d
Vel (y-1)7 s y1 Vy,-1 y1+1) vy
= 1lim dt
t—=o + 1
( ) \ﬁrz‘ (32-1) % dyz -y YE"']- (y2+1)‘;& f.if.a } ;3
+ (s-¢ at e
Yo +1 3\/;
= 11_;“0 J Hyr \/ v 1'1 L«s-c)dt ,/ i '1
y + l ¥y +1 Y5 +1 Yo +1
t—o Ykl ’Yél-l y2+1 "ygg-l 3 ﬁ
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Now we know lim y, = lim vy, = 1. So, recalling
t—>o t—=o
lim ieen
L, = and L, = 1lim = we obtain
1 t~p0 \(y21.*1 2 el \[_
1im n(a) = ) f2a L. + 2(3-c)2L2
a—> 00 3\[-
= B (\/53 + V(s-c) 3
3
v pRm—
Let us define To - B (\/;3 & '\r’(s-c)j) so that
3¢%u
~ .
lim h{a) = T > i
a—> 00

Hence we conclude that if a prescribed value of T is such that T> '1‘0 but T« "i‘fo, i.e.,
'I‘o( T <'rf“o

two trajectories are possible; an elliptical trajectory and a hyperbolic trajectory.

Now clearly as the distance between P and Q spproaches zero, (i.e., as c——'-xo),one

would expect all flight times to correspondingly approach zero. That this is not

true can be seen by observing the expression for F'i“;. We notice that as c—o

G \/5—3. But since s = %(rl I, # c), s-—>-£~(r1 +r,)=r Hence

1 1°
° 3y )
T —> &—;.,,, vrls. This should not be too surprising for, by the above figure, we
3y 2u

notice that the hyperbolic path mrith"f'ar as vacant focus always passes around F so that
when c-»o0 the path approaches the path from P to F and F back to P. This can also be
demonstrated analytically by using the eipression for the kinetic energy of our unit
mass particle: %— U2 =% yielding V- Y'%TJ—: . Now the time T required for the

particle to go from P to F is

1
e
v
0
r T
ijrl 5 ' ~[4 "
= (2 = r° dr
A -EH‘. Vo
1 2 %1
g s = i
s
0
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Thus the time to mske the round trip is
g V2
3 ‘/ZL 0
Notice that f( )—T(a)wf(f"-)—s}]/f’z 1-(1 - £8)°
otice that fla ) = T(a ) = £(3) = zy57 ={1= "0
2

4 sin"l(lﬁ'-;-%) o N1 ol - -3-)2 - iR, 28 )}

lim"il as ¢c—»0,.

3

E Jorson 2
] "
<] n 2+/o , =1 2¢
T(am) = f(am) = “5 \/—Zu §+ “"““"'S V8 - ¢ + s8in (-l+"""s )

Hence I i 5_
T(am) = (Q and T(am) * 3 '-2-; .
B 0=8
Now T I = i*-* “33 and p’f"o = 2—,_“, "'53. Thus we may have
© c=0 3 \/ELJ- C=8 3y 218

T(am)>"i"0 when ¢ is near max. or T(am]< f; when ¢ is small,

With this information and information concerning f', f", h', and limits as
a approaches limiting values, we can construct general shapes of the graph of T
vs, a,

"Graph of T vs, &

c T(a )< T Case 2: T <T(a )
ase 1: a_ ’1‘0 ase 2: . a.

—.long time elliptical

Case 1. To_ s e g i 2oml en EATALY >t T N e =S L . e
long time hyperbolic-case 1
tlm ) long time hyperbolic-case 2
§. e et ghban i ot K
Case 2, T B g e ey (T
9 T L short time elliptical
H'“"K--...
T e e
0 — : s — e e O I_._ F P e e < R o S H e e g AN A

| ~==__short timewhype_r:.bol-:i_c_:m

:
o
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The first step in making a detailed study of possible conic trajectories associated

—

with prescribed initial values EZ, Ty T should be determining whether case 1,

f(am)bf; , or case 2, T‘i‘do< f(am), is true so that a general graph may be obtained,

To complete our analysis of hyperbolic trajectories we write an iteration
method for obtaining a corresponding to Tnfﬁg
h(ak) - T

Sl T T .h'iakj

Since TO<'§;, a second hyperbolic trajectory is possible if T‘(To
-~ A
i h(ak; - T
+1 k "ﬁg(a}’)

Thus if TO< T~<%; two different conic trajectories exist; an elliptical trajectory

and a hyperbolic trajectory. For the hyperbolic paths Bdttin shows that

1 = L%(S-rl) (s-—re) sinh2 —l-_-(a+l5)-|
C J

1 = [ﬂ%(s—rl) (B—Tz) sinh® %{auﬁ)}

[ B3 A 2
corresponding to paths with vacant foci F and F , respectively. Since 1 = a(€° - 1),

these equations yield

€ = {1 +§-§ (s-—rl) (s—rz) (Y1Y2 * \/;2.: .‘/5’.:22'1 =

%

1

= ¥
€= 11 +—§-é- (s—rl) (s—-r2) (ylyg - \/y21-l y22-1 —-1}

Summary of results for alternative method of determining possible conic paths
associated with prescribed values of ?&,W?;, Ml and T where'§1 = ﬁ%, r, = fa,
M is the mass of the single gravitating body at the focus F and T is the flight
time from P to Q.
(1) Calculate f(am) and'EL to determine general graph of T vs. a by:
Case 1, f(am)</§;, Case 2, a;'Cf(am) (see graph of T vs, a).
(1) Calculate TO to determine whether an elliptical path is possible (&t '1‘<'1‘o
an elliptical path is impossible. )

(iii) Determine whether an elliptical path and a hyperbolic path are both

possible (i.e., 1 T0< T <@;).
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(iv) Determine the functions yielding T:
a) if f(a ) ¢ T use f(a) for elliptic path
b) if T <T¢ f(am) use f(a) for elliptic path
c) if T <T ¢ Tc:mhyper‘oolic path also exists with T given by h(a)
d) if T< T, only hyperbolic paths exist, T = h(a) for short hyperbolic flight
times, T = h(a) for long hyperbolic flight times
(v) Determine a with sufficient accuracy by
Fla) - T |
%1 ™ e T T Eak }"’a
da
where F(a) is the function yielding T
error in k'th iterate = Ek = ’ a - a has the relation
B = % Ezk g . |
& showing rapid convergence to solution T(a) =
(vi) Determine the eccentricity after obtaining good approximation of a by:
€ = {1 - 2*2“(“ - rl)(s - rz)(l - X%, o+ '\/1-x21 Jl—x%)}
c
g:{lmg'z-(s-rl)(sur)(lwxlxz- E)}%
for an ellipticzl path when T is given by T = f(a), T = f(a), respectively.
€ - {1 +250s - 1)e - m)(ry, + Vi ViZ o _l)}%
c
€= {1 + i—z(s - r)(s - )y, - ‘/E——l ‘/E-_l -1)
for hyperbolic paths when the prescribed time T is given by T = h(a), a~d
=h(a), respectively.
(vii) Formulas for above expressions:
¢ = distance from P to Q = PQ
Py = \{rzl 5. 2 rT, cos e 8 = L PFQ

—\{:1"2 e
Bi 1 2 1 2
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r1 + T, + ¢ S 8
2 m = 2
2 - 1 . 8=c
8 - 8=C
1+ i ¥y = 1+ %
3
o \/-&-{Vl-x22 + sin"lxz - V¥ 1lex L sin—lxl}

AV

0 2 2

l-x

Vau 2
(3 1-x
I PN 2
Van 2

I3 o e
= \J&— { y21-1 - coshﬂl yi - y22-1

K
Vy21—1 - cosh-]' ¥y

i

%" (a) =

8 2
¥l
A % M&lJ, s {ae) e
a Alk y2+1
r~ N -1
h' (2) % h(a) ok fnsc) 2 =
a = ¥,

1

5'*—{ Qe Vl—xz + sin"lx + Viex ¥ ain"lxl}

GM where G is the universal gravitational constant and M is the

mass of the body about which the conic trajectory takes place.

It is found convenient to use a year as unit of time and A.U. as unit of distance.

T(ou )~ V& {v’f““"?’ b s ey o

MM:1s

&

T j/}f {ﬁ?-/c’}i}'r}
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August 23, 1961

TO: Section 312 Engineers, J. F. Scott, W. Scholey
FROM: M. A, Minovich

SUBJECT: A Method For Determining Interplanetary Free-Fall Reconnaissance
Trajectories

This paper deals with determining round-trip trajectories for reconnaiasance
vehicles in free-fall motion when certain fundamental assumptions are assumed to
holg. After aolvinglthe trajectory problem to one planet and back the more general
problem of detérﬁining a free—fall reconnaissance trajectory to N planets before
returning to the launch planet will be solved. No assumptions will be made as to
the geometry of the solar system; indeed, it will not matter how eccentric the
planets orbits are or how much their planes of motion differ from each other.
Vector analysis is employed throughout the paper giving it a somewhat neat mathe-
matical appearance which should offer interesting reading. As far as the author
knows the method and results are new. |

The problem of finding an exact analytical solution for round-trip,free-fall
reconnaissance trajectories is, to say the least, not trivial, Consequently, in
papers treating these problems certain simplifying assumptions are very common.

In this paper we shall assume only the most basic: .

| I, When the vehicle (treated as a particle) is inside a "sphere of influence"
7’, centered at the center of the target planet, only the field of this
body influences its motion. When the vehicle is outside 7° only the sun
influences its motion.

II, If At is the amount of time the vehicle spends in 7, At is smali 80 that
the planets motion can be assumed to be constant; its velocity being that
velocity it has when the vehicle makes its closest approach.

Before stating the last assumption supposeZia some inertial cartesian frame of
reference with origin at the center of the sun. Let z:' be a moving frame with

origin af the center of the target planet and whose axes are kept parallel to the
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corresponding axes of Z . Then our second basic assumption implies that when the
o

vehicle is in 7, )_. is an inertial frame, Consequently, during the time interval

At the path of the vehicle with respect to Z| will be a hyperbolic conic section

with the origin at one of its foci.

sphere of
influence T

The third fundamental assumption is now written as:

I1I.

dm = ﬁp}
— — ;
The vectors 101 and Pz are the position vectors of the vehicle as it enters and

1 L]
leaves T\d.th respect to the origin of 2 . The axes of Z are not drawn since,

in general, they will n;:t be parallel to any of the above lines. It has been f ourncl3

that the best sphere of influence T has radius /  given by
2

+* m .5
=) e
where m and M are the masses of the target planet and sun, respectively; c¢ is the

distance between the target planet and the sun,
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By taking I, II and III to be our only assumptions we must deal with the '
three-dimensional character of the solar system. Consequently, the use of vector
analysis is indispensable, Thus at this point, we digress to set up the necessary
mathematical apparatus which shall be used throughout this paper.

Newton's law of motion is

dv Mn ¢
o = =G R
dt R2

—
where m is the mass of particle having velocity V, M is the mass of a second particle,
‘ﬁhia the unit vector in the direction from M to m; (Unit vectors shall be denoted

by placing /1 over letter instead of — ), G is the gravitational constant.

If M>> m we may assume that M is at rest, kenee—takingw—1l.and letting MG = p

av R
(1) it = -uR—2

Since this implies

— =
ii—(_R‘IV)=-qﬁx‘?’+-}."’lxﬂ=-;|a.'x"-1:""-}"'—-I‘i..xﬁ=0,
dt R2

dt dt
integrating
d ®xV)
dt
yields _
(2) RxV = n

where h is some constant vector of integration and is equal to the wector called
angular momentum of m about M, This shows that R and V must then be perpendicular

toh ,hence the motion of m takes place in a fixed plane. Writing

— ~
7 - & _4(RE)
at dt

(2) can be expressed as

A N
h=RxV=Ry =Rx(Rd—t+dtR)=RRxdt
Thus in view of (1)
- A ]
aV - . R__p2p 48
Exh -ulnsz(R!dt

- v [GHi-ah &)
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If 6 is the angle between R and some arbitrary line in the plane of motion

A A
4R _ 4R do
dt de dt
dR =
but ) is perpendicular to R hence
~
4 dR
Regr = .0
yielding
- IS A
USSR | S W (S M
dt Hat = at

Now sinca_!? is g constant vector

dtxh

a (Vxn) - & -
dt
consequently, we obtain

a(Tzh) _ aw R)
dt dt

whereupon integration yields
(3) Vit = u®+€)
where gia another constant of integration. Notice that since V x'l-; is in the
plane of motion so is ?. We also observe that-ﬂ a.nd-é'. are not independent of
each other for if -ﬁ“, ?and_l; are known at any time ¢
(4) . g - i—?: - R
Now
TxFTrh)=ERDT-GNR=02T
Consequently, employing (3) ve obtain the important formula

(5) _;=_L2-£:(§+€).
h
— o=t —
Thus if h and € are known and R is a point on the particles trajectory, its velo-

city at R can be calculated from (5).

Let © be the angle measured from?in the positive direction (i.e., counter-
clockwise) to R, Hence in view of (2) and (3)

l:l2 =-1.1-1; = -E:i x? = -‘R-'?x-f = -R.'l.l-(ﬁ -I--é:)

h2
ol ;—=R+R€Cos9 = R(1 + € Cos 6)
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h2

(6) T

il
1+ €Cos ®
But this is the general equation of a conic with eccentricity € and semi-latus
rectum
(7) X = - ;
n

_Thua we obtain the well known fact that the trajectory is a conic section. Since (6)
implies that R is smallest when © = O, the direction of _E-ia along the direction
of perihelion,

We now establish another important and well known relation. From (5) and (7)
we write

e

A e --
xR+ V.hx €)

—

VZ = -:?.?.-:;%?--ﬁ-x (ﬁ +?) = 1 V‘E.
- L[58 7 « »E-¥2D)
Employing (2) and (3) this becomes
v ;—I[h2+g.u(ﬁ.+n-€)]
';:p[hz + p(RE€ECos ®+R €2)]
With the aid of (6) we obtain
2
T ;7 [h2+1.|.(::— -R+R€2)]
- ;"j [2h2+uR(€2-1)]
which becomes, after using (7) a second time,

2
e u(%+ %P—'l) ,

Since 0= a(1 - €2) for ellipses and £ =al€ 2-1) for hyperbolas where a is

the semi-major axis of the conic we obtain
2

2 - 1
(8) Vo= ug + Q)
where the negative or positive sign is chosen if the conic is an ellipse or hy-

perbola, respectively.
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Let n denote tho plane of motion.

el

n —ﬁz(t = T5)

_TB1

7\
Let S denote the area of n bounded by the arc Pgl R2 and the vectors Rl and R?.

If C denotes this closed curve we obtain by Stokes' theorem
f7.a - [[Froxne
C S

=l
e —
-setting f = C x R where g is any arbitrary constant vector
- - ~ 3 il

(9) f(gz R)-dR = ff h.vx(gx R) ds.
C S

Now -

- - — — -—
(CXR)'G.R = dR'(CX ﬁ.) =C'R x dR
and

V:(ng) = -?g C-vR +:v R-Rw- ';

but since g is a constant vector the dyadic VC and the scalar V. c vanish,

Since R = xi + yj - zk the dyadic VR is the idemfactor I

an -~

VR =a-i+ j+3—x_ 130+ 35 +kk =1

Consequently, since V-R = 3
x((UxR) = = LI+ 3 = 2
N vx({ xR) ¢
Thus since C and h are constant vectors (9) yields the expreasion

C{nxrmfzg Jld8= chs

The vector Cia arbitrary hence we obtain

- -l A
fodR = 2hS

C
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-
By writing dR = -g% dt = Vdt this expression can be written as

T2 %>
J, RxVat = f hat = h(1,-1) = 2s
= T
(10) *. 25 = n(T, -T,)
L] Ll 2 1
This is equivalent to Kepler's second law, Setting TZ - T1 = AT, (10) yields
2
hAT =25 = 2f‘1rf’2¢e vhere
: 91

af
£ = 1+€ Cos ©

. £
.CosO:F-%

.« =8inB8d® = -’2€df’
0 = 5<t—qp

(26‘ 8in ©

Hence

i
"‘T‘Effz—“;ag e

Rl # €8in &

Ifil =(a€-a)€ =a(€-1)€ and-R.z= a(see figure on page 2), AT will

‘be ome-half of the total time At a vehicle spends in 7 . Thus
= F*
Bl e 2f =L Sy
ot =y E‘ainef’ ® k€ 'l-(?-l)l
vV €2
El=a(€-1) a(€-1)

: _z,_?j" TV
h
Cde-n VE2 P -d-p?

=y ‘ _ae
" dea) f€30) 2L
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F«-
22} 1 (€2 - 2
- 5 €°1)p +24p-d - —=5—3 log|2.
b (€ -1\/ a(c-1) €512
. 2 )2 2 2 e
VeI “V(e2npP v 2dp- 2 v a2 p v 24
a(€ -1)

Since #= a(€ 1)

V€21) 82(€-1)2 + 2.0a(€-1) =42 = aV €21 Y(€-1)%2(€-1)-(€ %1) = 0

Thus

At = -1?1-5 {\/E 3 \j,’z + 2;{0'- a2(€ 2-1)

AV %y [log IZ(E 2-1)\((0*2+2a(0'-a2(€2-1) + 2(€ 2-1) (0*
2(€ %-1) a(€-1) + 2a(€ %) ]}

+ 2a(€ 2-1) l -log
£
*
Sobstituting 0 = (ﬁ) ¢ we obtain

2
(11) At = 2,‘-5—{\/(;)} c2 o 2a(§)§ o 32 (€ 2.1)

4 2
< a logg—a- [\[(%)5 & & 2&(%)5 C = ,2(€2_1)
2

+ (%)gc+l] }

We now introduce the notation which shall be used to find the trajectory which

will take a free-fall vehicle from a certain launch planet P to the vacinity of a
certain target planet Q such that its interaction with Q will send it on an inter-
ception trajectory with the launch planet P,

(a) "'é'o = position vector of the launch planet with respect to ) when the
vehicle begh_u its reconnaissance mission at time t o} this vector will
also be taken to be the initial position vector of the vehicle.

(v) -;1 = position vector of vehicle when it enters the sphere of influence T

of the target planet at time tl.
(e) ?;_ = position vector of vehicle when it enters’] at time t

to Y.

1 with respect
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(a)

(e)

(£)
(g)

(n)

(1)

(3)

(k)

(1)

(m)

(n)
(o)

(»

"51 = position vector of target planet at time t. when the vehicle

2
enters its sphere of influence 7.
'F;A = position vector of target planet when the vehicle makes its
closest approach to its surface at time tcl’
'i-; = position vector of vehicle when it leaves 7 at time t5.

I 1
?; = position vector of vehicle when it leaves 7 with respect to ):
at time t,.
'é; = position vector of the target planet when the vehicle leaves its
sphere of influence 7 at time t,.
'é; = position vector of launch planet at end of reconnaissance mission;
this vector is also taken as the final position vector of the vehicle
for the mission.
e L= '
hl' €1l .'1’
corresponding to the departing elliptical trajectory and the returning

‘!1 and T:;, 63, ny-!s are the vector and scalar parameters

elliptical trajectory, reapectivel;‘r.

-122' —5.2, a ,.!2 are the vector and scalar parameters when the trajectory
is in 7"\rith respect to Z' (by the manner in which ):' was chosen, these
vectors given with respect to Z ' have the same coordinate values with
respect to ) ).

P(t) and Q(t) denote the position vectors of the launch planet and target
planet as functions of time. (These functions are obtain by ephemeris
tables.)

.

e
Vl and Vz denote the velocity vectors with respect to): as the vehicle

enters and leaves 7'. respectively; the velocity vectors of the vehicle
L] e .

as it enters and leaves 7 with respect to Z are '?1| and 7)’;'.

d = distance of closest approach,

liQ = radius of target planet.

> e o ' T —
Ty rJ = arc of trajectory bet\teen"r'i and rj s T.,r, = distance between T ,rj,
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orbit of target planet

T~ _vehicles

trajectory
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The problem of determining a round-trip, free-fall reconnaissance trajectory
to one planet shall be formulated as follows:

Assuming that the three basic assumptions hold, find a trajectory of a
vehicle launched from the "center" of a given planet at the prescribed time t Wi
which makes a closest approach to a given target planet at the prescribed time tcL
and returns to the "center" of the launch planet. Notice that after selecting the
launch and target planets, only to and t oA 8T® prescribed, In theory this problem
will always have a solution in Newtonian mechanics; however, if a solution gives a
trajectory which comes closer to the center of the target planet than its own
surface, it will be physically unrealizable and is said not to exist, For definiteness
ve shall assume that T St - t, 3 T(am) vhere T is the ahorteﬁt flight time it

cA
takes a vehicle to pass from 'é"o to

—
Cea
time taken when the vehicle has least energy (see Technical Memo #312-118).

on an elliptical trajectory and T(am) is the

Instead of finding an exact solution to the problem (which, in lieu of the
three basic assumptions, will not be a true solution) a solution shall be found
which will be very close to an exact solution. This solution yielding the tra-
jectory vectors '*1, ?1, -h;, ?2. -t-;.’. ?; should suffice for a preliminary analysis
(e.g. distance of closest approach), but for an actual mission where more accuracy
may be desired an iteration method is given in the appendix that will enable one to
obtain a solution which is arbitrarily close to the exact solution.

It can be shown (see above mentioned reference) that if %, 218 T(aﬂ) where T

is the time required for a vehicle to pass from the point f!; to the point 'ﬁ; under

the gravitational influence of one stationary body

(12) T = :—3 {V 1-x°, + sin~t 12. - N ol sin-lxlls

2 1l

where a is the semi-major axis of the elliptical path, 4 = GM and 3, % are given
S
by y-1-2 2, -1 S8
a

s=HR +R + RR)
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Tho eccentricity o then given by

{13? € = {1 - f‘qﬁzz (S-Rl)(s-ﬁz)(l-xlxa - ‘\!1—121 ; \{1_122)} ¥

R

; _ o B o
If vo nov subatitute T = tCA - to' Rl " and Itz = Cop into (12) a, cen be
calculatcd, Employing this in (13) the corresponding occontricity El can te
calculatcd, Consoquently, since !1 = al(l- Gzl) the ocoi-latug rectea ,(1 is
obtaincd. Theso calculated values of “1-51 andfl will Elcarly be very closo

to tho oxact values, Now by energy considerations a vehiclo passing froa E"o to

-CTCA on an elliptical trajectory will have an angular momentum -1;1 given by

. T xT¢,
_ 0 CA .
(14) h) = & 2> IVuSZIQ
c X cC
o] CA

whero tho positive or négntive sign is chosen so that
.

hl* hp >0

—
whero hp is the angular moxzentum of the launch planet about the sun. This can be

easily seen by (2) with the aid of (7).

Consider the problem of calculating the vector € corresponding to an el-

i

liptical path if € and two points Rl

property which distinguishes a long-time elliptical path froz a short-time

and 3{2 on the path are known. The

=t —_—
path is that in the former case the chord joining Rl and R2 intersects the line
——— P
seg=ont F 'f'* joining the two foci F and F . For each of these cases we consider

all tho possible situations. Notice that (6) and (7) imply

(15) Cos © = ﬁf’- 1)-%

Thus writing

mi—

00591-(‘{-1)% Cos 6, = '{-1)
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ve consider

(1.1) . Cos @, > 0 Cos ©, » O
(1.2) Cos 6, ) 0 Cos 0,<0
\ ) Rp> Ry
(1.3) Cos ol< 0 Cos 6, > 0
(1.4) \ Cos 9,<0 Cos ©,€0 /
(2.1) / Cos 8, 20 Cos 6, 3 0O
(2.2) Cos 8, 20 Cos 8,¢<0
i > Rl( 82
{2.3) Cos 8,40 Cos @, 2 0
(2.4) \ Cos ©,<0 Cos 6,0

3
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Lot us firot toko up tho caso of "short-timo elliptical trajcctorice™ and assuro
that (1.1) - (2.4) corrcapond to this case, For "long-tica olliptical paths" the
sbovo oight oituaticno azain oxhaust all tho posaibilitics cnd, for convenicenco,
wo zoor=2 thoy aro nuobored (3.1) - (4.4), rcopectivoly, Thus it is clear that
casca (1.2), (2.3), (3.1), (3.2), (4.1) and (4.3) aro irposoible. (In all casos
o nasu=a that tho vehiclo pasaocs from ﬁl to f?_ in c;'mntor-clock\rino ao.noa.) Now

for ccoo (1.1) wo may havo the following sub-casos:

(1) /x
‘z" E F F’ ‘.\\l
g /

By olczmentary trigonometry it is easy to sec that the first two cases yield

- Y e 20 ’ﬁ b | 00929 ﬁ
- b= 0BT 0y Ko ® OB L8 i ¥y ¢
|‘1 - 0092 e ﬁa w vy e 0082 62 ﬁll

&




(-\
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or

(1.11) ?- \/R21€2 '(‘2'31)2 ;;2 - \Azz & '(’2‘32)2 E; ¢
l \/R21€2 - ()R, - \/n2262 - 4R

For the last two sub-cases (iii) and (iv)

(1.12) Z =. Jﬂzl &% . (_é._xtl)z 'ﬁ; - \/R22€2 _ (j'*‘z)z ;1

| \,/R‘?1 €% - (£r)® E + \/322 - Ar) 1

In case (1.3) is true the following sub-cases are possible:

(1) (i1)

(141) (iv)

I\

. : —
Notico that in cases (1ii) and (iv),_Rl and ﬁz are on opposite sides of F F

-'4
but 'Hi'ﬁa does not intersect FF,
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Tho oub-ccaca (1) and (44) yiold
(1.31) €= 1 L 2 B
l \/Rzl EF -(-E"--Rl)2 sz - \/RZZ £ - (1-32)2 _ffl‘

end tho sub-cascs (iii), (iv) yicld

—

5 ap 2 5 - 2 —
- o MRS €% (ER)® R, R°. €° - 2-R.)
a.32) Ts \/ 1 1 R \/2 ‘ 20 B .

l = \/321 ¢ _(,8_31)2 '§2 e \/Rzz ¢ - (L- Rz)2 -’;1

If tho ccao (1.4) for the "short-time elliptical path" is true each of the fol-

lovwing sub-cases may be true:

(1v)

~h
ot
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% —
Tho oub-ceaca (4) and (i4) yiold tho samo formula for € given by
2 2 2 = : 2 =2 2 —
La) \/R y € = (4R)" R, — \/“ 2 € - -R)" By

—

| \{/Rzl € - (£R,)° R, — \/a22€2 “ (e B0 'é‘l]

end for (iii) and (iv)

/ . g / : o
_ \/321 (2 - (- Rl)2 R,— \/322 (2 o e R2)2 R,

(1.42) ( - c

— € - (Lo 1) T, \/322 C=ta)r n

—

¥hen Ro< R, for the cases (2.1) - (2.4), Ry, 6, and'é'z, 8, in tke cascs (1.1-1.4)

aro simply reversed. Hence

[2 2 2 = 2 .2 -
(2.11) _€‘= \/Rze - (L~ R,)" R, — \/R 1€ - (€= Rl)2 R,

€
| \/a22 62 _ - Rz)z ﬁl - VIJRZI 2 - (A- Rl)z -ﬁzt
2 2 = 2 2 2 =
(2.2) 7, \/R o€ - L) F 4 \/R €0 -U-n)* T ¢

n

I .\/322 ¢¢- (L-r)E + \/32152 - Lr)® &, ’

e ?é Ve - LR - (R - L) ¢

I \/’:‘22 €2 YA R2)2 i; o \/R21€2 _ (/_31’2 =

N

o ¢, - €-U-mf R E- W) R ;
IR 2 X TN C LA
cay - B - Lem R - (€€ (Lr)PR

.., \/Rzzéz- 2 RZ)E—R"I_ \/R21 2 _ _Rl)z ﬁ;l
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g -4 12 = 2 2 2 —
gl el BT = ) R e - o (fan) §

|'\/“22€2 - @R )R, - \/R21 € - (- Rl)zi R
vhoro (2.11) cnd (2.12) corrcapond to (i), (ii) and (4ii), (iv) of case (1.1) with
'ﬁi and'ﬁé roverscd; (2.21) and (2.22) corrcspond to (i), (ii) and (iii), (iv) of
caso (1.3), respoctively, with ﬁl :l.ml_f!.n2 reversod; (2.41) and (2.42) correspond to
(1), (i1) ana (iii), (iv), reopectively, of case (1.4) with R, end R, reverscd,

In tho cose of "long-tino elliptical paths" the cherd jcining‘ﬁi and'ﬁ;

h——
I joining the two foci. Consequently, there cre

intorsacts the line scgment

only tuo sub-cases to be considered for each of the cases (3.3), (3.4), (4.2) and

(4.4). 1In tho case of (3.3)

Both of these sub-cases yield
ey g e 2 —
(3.31) _g = \/Rzl . L2 Rl)2 R, — \/R ,€° - 4- R,)" R,

= €
I XA TN o




W
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For the case (3.4)

(1) .

and in both cases

—_ 2 2 2 —
(3.41) = '\/R21€2-(/f- R1)2 R, - \/Rg'E - (£-R,)° R,

€=
l_\/a?-léz - (L) B \/32262 ~ ) H

and is ocxactly the same as (3.31). For the cases (4.2) and (4.4) we simply

interchange Ti‘l and _fz yielding

(4.21),(4.41) : _ i
= __\/R22 & = (45112)2 R - \/32162 - % Hl)2 R, ]
l_\/ﬁzz g5 . 32)2 By \/Rzlé2 - (4- R1)2 R,

which io the same as (3.41). Now for the case of "short-time elliptical paths"
we £ind by observing the above figures that the sub-cases (i) and (ii) are more

desirable than (iii) and (iv). Consequently, we write
JE€2 - LR, - (W) |
| V- iy,

R 2 ¢?_ 7.2 0% - 2 e2_ - T
an €= T i R2€1fnlcn2

G RV R 2N

(6} Em

—E£if R) >R,
Raaez (- Rz)z. -ﬁ-ll
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In tho ccso of long-timo olliptical paths is given by

2 52 2= 2 _2 2 =
16) '(_?g _ [nzc’ -(«é’-na) R, - \/Rlé - (£-Rr)° R,

2 €2 _ (g 2 = 2 .2 g 2 =
YR 2€" - (£-R)" R, - By€% = (£-R)" Ky
for boia czaca R)> R, and R,<R,. If the formulas (16) aid (17) do not yield

dcaircd solutions to the round-trip problem, one may try replacing (16) with:

(2.12) if ﬁ'-/i- -1end 'R!-- 1 cro both positive; (1.32) if Ri - 1< 0; ard replace
;e

(17) vith (2.12) if -r—’[— -1>0 and O >0, (2.22) if“—‘l— - 1< 0.
b = % = R

Roturning to the problea of finding a round-trip trajoctory to ome terget
planot wo may now calculate the vector Z’; Since the departing elliptical tra-
jectory is asouncd to be a short-time elliptical path, ?1 i3 calculated by (16) or
(17) if o> Cop OF ©,< CoprTesSpectively, by subac'l:i‘m.z'cing-ﬁh1 ='é"o, -ﬁz =‘€CA,/(= 4,
end € = Gl' .

Nc: o3 the vchicle passes the target planet it will interact with the targoet
planct's gravitational field (i.e., with the target planet's zotion) and, consojuently,
caorgy will be oxchanged, Thus, in goneral, the total energy El of the vehicle
vith recapeet to Z before entoring 7~ will be different from the total energy E2
of tho vchiclo after leaving 7~. Hence, since total energy = potential energy +

kinetic energy we write by employing (8)

H
8 8 1 1
1 rl 1l CCA 8'Cop 2&1
(1 -
;] L e B 1 1
E = - L 'a' v - — + u (_. gy |
2 r2 2 cc A 8'°Coy 293

Henco, in genoral, a, & a5, 1In some cases, if T = ¢, - t is noar T, the oficct
of tho targot planot may increase the vehicle's total enorgy such that it posoca
ocut of 7-on a hyporbolic trajcctory relative to the sun. This situation will not bd
conoldcrcd oinco high initial cnorgies would have to be impartcd to the vohicle at

tho becoinning of ito journey. If, perhaps, this is desired one may still solvo

{0 problem by uoing different formulao, all of which appoar in this paper. Thus
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we assume the .veh:lcle returns to the laﬁnch planet on an elliptical path., This
returning trajectory may be either a short-time or a long-time elliptical path,
The vehicle may also make one or more circuits of the sun on its returning tra-
jectory before intercepting its launch planet. The time T, which the vehicle
requires to pass fromfl to 'ﬁ-z after first making k complete circuits of the sun,

corresponding to these situations is given by

(19) T = \/:_? {‘4‘1--122 + a:l.n'lx2 Vgt - i ain-lzlj + kP

l
and 2
. di® ./ V
(20) T = i— { n o+ 1-122 + ain'lxz % 1-:21 » ai.n-lzl}+ kP

respectively, where a is its semi-major axis, X, X, are as given in (12) and

b
P==2n :— is the time the vehicle takes to complete one circuit of the sun.
The eccentricity corresponding to (19) is given by (13) and corresponding to the

case of long-time elliptical paths it is given by

~ 2 ¥
(1) €= {1 --qnzz (s-R)) (s-R,) (1-x,x, - ‘/1-x12 ‘/1-122)}

It should be borne in mind that at this point we are free in theory to make
the following statements:

The vehicle returns on a short-time elliptical path withk=oork=1

or any arbitrary positive integer.

The vehicle returns on a long-time elliptical path with k = o or k = 1 or any

arbitrary positive integer,
These statements are possible because of the unique way of stating the initial
conditions., The determining factor will be ;he distance of closest approach cor-
responding to egch of the above choices.

In most cases short flight times will be desired hence we set k = 0 and assume

that the vehicle returns on a short-time elliptical path. Since T, is very close

2
toc,, ve gubatitute T= t:3 -t 8= a5, Ry =S Ry = cy = P(t3) and R\R, = u(tj)

into (19) \rhere-ﬁ(tj) and u(t3) are known vector and scalar functions of the



.
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variodblo t3. Conacquently, wo havo an equation relating a, and t.:

3 3

3 ¥
a ? c., + P(t,)-u(t,) 2 2 c., + P(t,)-u(t.)
(22) gt = E} \i- [1_ CA 3 3 ] P [1_ CA — 3 3 ]

. e =5

cny + P(t=)+u(ty) € Cny + P(t;)+ult,)

) \A_ [1_ cA ks 3 ] _ sm-l[l_ cA 3 ]
&3 y

Since rccoanaisaanco trajoctory problems will employ large digital computers, tho

fuactional rolation botween ) and the variable t3. 8y = &5("3) erpressed by the
above cquation, shall be taken to represcnt a large table of numerical values of '3'5
coric3ponding te a set of reasonable values of the variable t.j. These veluecs of 33
corrcapending to various values of t3 can easily be calculatcd by the method given
in the cbove reference. Henceforth, if f(x) and_f(x) are eny known scalar end
vector functions of a variable x we shall think of f(x) and F(x) as tables of f
c.nd_f-:vorsus x calculated over some set {:il of the variable and stored in the

f
coaguter, .

Ccasequently, substituting the tables a = a5, R, = P(t.ﬁ), R,R, = cCAP(tﬁ)
into (13), €3(t3) is obtained. We then calculate 63(1:3) by (16) or (17) depending

. _ N 2
on wicther ¢,,> ¢5 OT €y < Cqy respectively, and Fu ‘Z;'.(t}) = 33(t3)('1- € 3(t3)),

e

R =5 T Flty), € - €ty oot
calculato—ﬁ}(t3) by (14) with-—é?3(t3) = a5(t;)(1- € 23(1:3)) replacing .é'l,'

—_—

ca
—_— p—_ -_
replacing € and P(t3) replacing ¢,.

New if the vehicle is in 77
(23) T aew
whora T io tho position vector of the vehicle and T is the position vector of the
targot planct with respect to ): . The vector 713 the position vector of the

vechiclo with rospect to X '. If 'fa denotes the velocity vector of the target plahot

vith rospect to Z at time t., , then according to the second basic assumption,

CA
differontiating the above equation yields

—y |

(24) v - Vo o+ ¥
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-
wharo—?and V are the velocity vectors of the vehicle with respect to z and

):'. respectively. Consequently, (24) yields

—i,\ —_1 — — et
v].‘ Q+v1 VleQ-PVz
—_— = -
a.a vz .V'? = 2+ -.‘v' +v|2

1

2""2 %2 et a2tV 2
In view of (8)
V.2 - uq(%,;'-r -};) vE . uq(% +'%;)
Hence since 1 = (5,
via = v;z

Now from (24) #;2 ey A AR

1 2 h |
(25) . ¥e. N
e e v22- 721 = ZVQ (V2 - Vl)
By (5) the vector_‘?l can be calculated by

o e A <
g e (e + €)
since T, T, is very close to CCL The ta.blaqi’h (t ) may also be calculated by

(t)- h3(t)z(cm+?(t)

Making use of (8) we write

vo=nE -1 Yol 'T
5 e | ( ca tB))
Substituting the above results into (25) we obtain
y S | v ; g z
' (26) u’.('l - ;(?3 ) = 2\' [2—(—) h3(t ) x (°CA + €3(t3))-2; n, x(cy, + el)}'
The solution of this important equation is obtained by comparing the table
ZVQ' (v (t ) -V )
with the table by (__ o )
n3( t,)
and finding that value of t3 vhich gives the corresponding entries in the two

tables identical (or nearly identical) values.



JET PROPULSION LABORATORY «23= TECHNICAL MEMORANDUM 312-130

After obtaining a solution t, of (26) the quantities

3
et i

- o - -
= a3(ty) €5 =€50ty) Ly =25(t) by =hylty)

are calculated, Hence by (24) and (5)

o i Es 1 = A - -
(27) i"’l“'q'zzhl‘("c:«*el)"'q
. & . - - e - -
(28) Y; =V, -V -j; hy x (cgy +€,) -%
and V2, V1% are calculated, Since in theory V) = V) we campute
the average
(29) Ve 3P

and employ (8) to obtain

.
(30) ‘2"?2 o = 2
Vp"-2 44 v

For hyperbolic conic sections the eccentricity € is given by

G-J“(f-)

where according to the figure on page 2

b
tmﬁm- ~

Consequently by the third basic assumption

Now from the figure we write
VoVl =V V! cos 2 (%

- i T "f)*)

--V v cos 2 @
-V QA-2 cos=

i »)

b
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VW - WtV

... °°‘2 ﬁ » - w
1 L]
2Vl 72

from which we obtain

2V W '
(1) €, = j R
LRI TR )

2

After calculating a, and €, by (30) and (31) the distance of
closest approach d may be calculated by

d=a, (€,-1)- By
which is evident from the figure of the hyperbola,
If the distance of closest approach turns out to be negative we

conclude that the vehicle cannot return to the launch planet on a short-
time elliptical path without first making at least one complete circuit

of the sun, Consequently, returning to the choices given on page 20 ,
we may let the vehicle make one circuit of the sum before it intercepts
the launch planet thus changing k=0 to k=1 which will simply

result in t.he addition of the term
-

ae| 3
A S
to the right hand side of (22) and repeat the calculations using the
same formulas, On the other hand if we assume that the vehicle returns
on a long-time elliptical path without making a ccnpiete circuit of
the sun, then if the resulting distance of closest approach turns out

to be positive a shorter flight time will be possible, Hence, we replace

(22) vy
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(32) t, -t,= J.I: “ﬂ(t i )]4- inlEL- ‘+P(t3)-u(t3):|
3 2a
3
t t +P
Jl‘[ +2 (8, FJ +.1n-1[1.°°* (t3>m(t3ﬂ
2a

3

The machine shall then proceed by calculating a new table a; =a, t. )

corresponding to the set {tBi] of expected values of t3 by solving

for a

3
(i.e., each entry of the table corresponding to each t'3:|.) into (21) we

in (32) for each tBi of {tBi} . Substituting this table

obtain the table € (t;). The table of vectors €,(t,) is calculated
by (18) with A = 13(1:.3) = a,(t,)Q -€§(t3)?l 51 = :cv 52 - 'r"'(ts)
and € = €3(t3). After obtaining the table € 3(t3) the above steps are
repeated using the same formulas, If the resulting value of d remains
negative and the initial conditions t oF t‘CA remain unchanged the
vehicle must make at least one circuit of the sun before it can return
to the launch planet after leaving the vicinity of the target planet,
Consequently one is forced to change the initial wvalues of to' tm and
perhaps comsider long-time departing trajectories.

Suppose one of the above calculations of d yields a reasonable
value for the distance of closest approach, Then since ..-?2 = 1.2(€ g -1),
an application of (7) yields

(33) h, = j.z(eg-nﬁq'

4 L
Since €, 1s along the direction of perihelion with respect to X and
el
eince V) = V) the vector €, may easily be calculated by the formula

€ =
2 at -
(34) lvl = VZ
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.t -l ;
where V, and V, are given by (27) and (28). Also since h, is
perpendicular to the plane of motion in 7 and passes from 51 to
-t L b
Q2 'ith respect to 2. the vector h, may be obtained by the formula

(35) e WY
E R Y
3 =%
Employing (3) we obtain
~ ar A e 2
(36) R=CGr Wxb- 055 o |
N Q : . g (01# czchA)
ek pz"/i_q?;‘d'ez)(i)s €2

The.smount of time At the vehicle spends in 7’ can be calculated by
cw

&,
(11) substituting a = a,, € = €,, # =fqgawith M and m equal to

the mass of the sun and target planet respectively consequently

(38) ty =t -3t t, =t +3at
from which ©, and ¢, can be obtained
:1 =-Q(t,) | ?2 - 3('&2)
Thus by (23)
(39) n=%+p Bt P,

The solution will be complete when the position vector and corresponding
velocity vector of the vehicle are found as functions of time, Since

e -
this will involve a great amount of computation the quantities € 1.8

'é-' a = oa 2 i~
2,52,6'3',];3 and -rl,':'-'z ,p ,Pz, should be refined, 7This can
be easily accomplished by a method of successive approximations given in

the appendix,
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We now develop some important general formulas from which the
camplete solution may be calculated, Consider any elliptical trajectory
which takes a vehicle from :ll to 32 such that 4 il‘ﬁz < 180°,

Thus from this figure it is clear that the vectors

(40) R +2@®,-8)

A
n

= (n=0,1,...N)
|5, + 3@, - &)l
represent a set {Gn] of unit position vectors of the wvehicle as it
passes from R to R, Notice that if n=0, © =R and n=N
”~ - e L]

yields G =B,, It)RER >180 theset {5} (=0, 1,2 ...N
is obtained by constructing three subsets {"n} (n=0,1,... Nl-l),
{enJ (=N, N4, .., NH, -1) and {un} (n = N, N, +1, ...

N1+N2+l3-ll).
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+

+
Lol b
-~ | =

5|
I

(hl.l) (n - 0’1’ eoe N - 1)

50>
. 1B
pPF Lok

'
=

S (n=DN', N' +1, ,, N' Hi"2])

(41.2) c - ﬁ'*-;,'rﬁz-fl)

(u.3) G - ﬁ * N (aljgl) (n‘!'ﬂl', N! 43n . o

|‘-Bh1"£:+;!: (Elﬁz)l N' 4+ N = N)

A A A AA A A N B
Notice that T Bl’ Oyt = 'Rz’ Oprgyn = -Bl and NI = N = 32.

Thus this set {gn} (n=0,1, ... N) also reprc#anta a set of unit position
vectors of the vehicle as it passes froa ?1 to ﬁz such that 4 3132> 180°,
Buploying (5) the set {?n} of velocity vectors corresponding to the

vehicles set {Gn] of unit position vectors can be calculated

.

*2) V= FEx(@+€). @@= 0L ..¥

From (6) the magnitude of the vehicles position vectors can be calculated,
Thus

(43) 2 it

o .
146 . °
The set {tn} corresponding to the time when the vehicle is at :n
can be easily calculated by (19) for short-time trajectories or (20) for
long-time elliptical paths by setting k = O and

B B2

‘-'S---
X =3y =1-g=1-——1
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+0 + 2+02-2":' -
MR - v e £ . M 0L 0
2

*n

xz"hz"l‘ﬁ:& =] m

2a
2 2 .L..I‘
- Ef'nil q %=1 %
2a

*n2

and T = tn - to where t % is the known time when the vehicle is at

- -

g =iy

(44) o=t X O N S P |
**n o | M *n2 *n2 *n1 *n1

or 3
(45) tn-to-l-’-;z x+,1—x§2 +ain-1:nz+‘ l-zil-buin'lxnl

A
Consider the determination of {cn} for hyperbolic trajectories,
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Thus by the above figure we obtain the formulas

- +B'(.- =
(46.1) o - - 5 €5 (a=0,1, ..., ' -1)
'Bl"'nl%"‘nl)'
- - 6)
(L6.2) o (o= N', N*'+1, ..., 2N' = })
% = Ie.’_n-ll (ﬁz‘e)l »

The corresponding set of velocity vectors i? can be calculated fram

(42) noting that in this case £ = a(€ %-1). The magnitude of the position
vectors can be also obtained from (6) and hence by (43) the set i i

can be calculated, The time the wvehicle takes to pass fram Bl to R

on hyperbolic trajectoriea can be expressed as

(&7) J i,l;rl 1 - cosh™t Y5 ' ) 23 + cosh® T,
(48) T ’i— ’yl 1 - cosh + yl*J 7, 21 - cosk™ 7,

where

corresponding to short-time and long-time hyperbolic path respectively
(see technical memo 312-118), If this flight time is known the type of
hyperbolic path can be determined by substituting into (47) and (48)
the values of N and ¥, corresponding to -ﬁl and ?2 and observing
which formula yields the correct flight time,

With the aid of these formulas the solution can be readily calculated,
Let us now denote the times when the wvehicle enters and leaves the sphere

of influence of the target planet by t.ll and t"z ~respectively, Let
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the time when the vehicle completes its journey be denoted by 1;N instead
of tr ’

Since we assume in the figures drawn for elliptic trajectories that
the vehicle passes from i.l to -3.2 in a counter clockwise direction the
angular momentum vector -t: always points up out of the paper. Thus the
angle J/ T, ?1£180° if and only if

=
c

(49) x

A
= . % -0
B

H b

H

e
Consequently the first set of position and velocity vectors {:n} '{Vn}
at times tn of the vehicle on its departing elliptical trajectory can be
easily calculated by (40) or (41.1, 41.2, 41.3) depending on whether (49)
is or is not satisfied respectively; employing the results in (42) ana (43)
et e -l
to obtain Vn and G‘n} and substituting {"'n into (44) (since for
definiteness we have assumed a short-time elliptical deporting trajection)

wepbtain the corresponding set of times {tn}- Thus if

-l -
c.xr
cy X Ty
-- n -

s °o"'ilGl'°o) )

n= (n=01...N
I:o+§(;l-:o)l o !
1l
if

e -l
C, X Ty

o}
v
I-'u"
—®=
Hur)
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(n=0,1; ¢os LY -1)

s o » 1 o
A __f‘lln. — (n=N; , N +1, o0 F] + X7 = 1)
g i ——-l(;l -% )l
N" v
1l
n=N! = (* )
-c S 1 1 + r
G‘ = | i bk " i
n .h n-N -N" pry prg (n=R' +H1' Hi+n1+l, evey
N K} + N] + N'"=N,)

where Hl is the total number of observations one wishes to carry out while
the vehicle is on its departing trajectory. Referring to the figure on
Page 27a the numbers Nl s N" and H’]"' are the number of observations

1 — —— —
one wishes to perform when the vehicle is on the arce A B, BC and CD
respectively such that Ni + N; + K'i' = li. After calculating this set the

* -

results are substituted into (42) to obtain a corresponding set {‘Vn}

(n=0, 1, oo l‘ll) of velocity vectors.

it L i, A —~
Vo= z b x (5 +€) (a=0,1, «cc X))
The set of position vectors i;n} is calculated by
y4
.n-n = _____L__ 2%

1+’ el ﬂ‘n (11 = Q' 1. e N].)

The corresponding set tn} is calculated by

a
tn=t°+ :s F-xnz + 8in xz-ll-x]-sin
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+ o+ -2 .o

where ! 5§ L A
' c + 0 c
. = ]e =B i o __n

c
2€ll

L
e

2 2 -,
c +rn-l c°+o"2-2_c9 T

n2 z;l B

(n=0,1, ... nl)
When the vehicle enters the sphere of influence of the target planet its
- -
position and velocity vectors i pn . i‘?l'l} along with { tn} can
be obtained by first calculating [ 3 by (46.1) and (46.2). Changing

e

b i .
the notation of pl and % to ﬁﬂ. and pn respectively
1
A

. 2
R+ =% ,-R)

A
p= 1 1
B e - (=N, N+1 N, + K = 1)
n—NJ = b -y ol B e s 2
+
5 1
=N! e
A €emn® (D E)
Ny 2
] ¢ 1 N
= (mnlwz, B #6541, 000, M 428} = K,

- N, N -
&+ 2% 5, )

)
where 2H2

vehicle is in the vicinity of the target planet (i.e., in its sphere of

is the total number of observations ae wises to perform when the

el
influence). The corresponding set {V:'l} of the vehicles velocity vectors

l
with respect to ). is calculated by

- . A -t
v};.t hx(0,+€,) (@=K,F +1,..,¥§)

The position vectors { e} are calculated by

Y4 A

R, = ':ﬁﬁ A - (@=¥,8 +1, ..., K)
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B et wi
By substituting R] and %, for B and R, in (47) and (48)
and comparing the resulta wvith 1:N 1:li A t one can determine whether

2 1
the byperbolic path in T witnh respect to Z is of the short-time or long-

time type. Consequentl,

2210 .2 Y <
tn=tnl+ 7 ynl-l - cosh Y1 = yn2-1+coah Ypo

2
a - 2 -1
2 2 1 ) h
—— -1 =cosh "y, + |¥ 1 cos Yy
t, = tnl + J 7 ’ynl nl n2 n2

Q
for short and long time types respectively and where

A, RPs Pi-Pu-B

ynl=1+ e
2,
2 2 -t el
+Q1'Jlepn-2% pn
yn2=1+ 1)
2,

and n= N Nl +1, eeo Nz. This set may also be obtained by employing

(11) which holds for both short and long time cases.

=t (y **n",’% 2 2a, - (€2 - D)
log €2 (f +2a p- 2(€2-1) +p +a))

]

-thl - t“z)'
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tngtNl-l- Né+3'tnl+tn2-tnl+né-3 (J‘=1,2,...Hé)

so that n in this formula ranges from n=31+Né+l to

n=N + Né + N!' =N, . The values of ¢ are first computed

1 2 "2 Ny +F) -3
from the previous formula. One may use both methods for the computation of

{ tn] (n=N, Nl + lyeeep Nz) to check one against the other. With respect

toz

o, =At)+ O
o.n n pn (n=H1,Hl+1'-ol'N)

2
vV=v+V
n Q n
-l
where YQ is taken as the velocity of the target planet when the vehicle makes

its closest approach at time tCA = tN]_ & Né .
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The solution corresponding to the returning elliptical trajectory

proceeds by calculating

- ne-
e A B
Y TRk (0 =2 B +2, %% Ny ¢ N3 = )

r, *+ | -
2 N|3 6‘3 - rz)

- -d

ir T, X 3 ~ 33
P Y
|r2 X c3|

where N! 3 is the total number of obtservations made of the vehicle on its

-
returning ellipse Ir ﬂi X "3 ~ -ﬁ3 these vectors are calculated
by I |r2x°3|
—~ n-Np(-e3-1))
6_’2‘ﬁ'3 (n=Nyy Np +1 **¢  Np + N'q = 1)
n ?4"'N2—(-E‘-E-')| 2? *2 ’ » N2 3
2" w9

B - By %y

-cq +
3 N''Ts (n = N, + N'gy Ny + Ntg + 1,000

-N - N!
'a+n 2 3(—0‘3';2)

Ny + Nlg # N''o =1
- s p ¥ Mg Wiy = 1)

(n= Ny ¢+ N§ + NA', N, + Ny + Nyt 1,000

-rz+n-N2-N'3-N§'
Nj"

SRR

(?2 = .‘?3)

where

N, + N_J., = HAT = MY » N3 and by observing the figure on page 27s, N} is the
munber of observations made when the vehicle is on ﬁ Ni' is the number of
observations made when the wvehicle is on ‘B.\G and N4'! .ia the number of observations
made when the vehicle is on &). The total mmber of observations performed on

the vehicle on its returning trajectory is N§ + Hi' + Ni".
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The corresponding velocity vectors are calculated by
L/ ‘43 3 X (en * 63) (n= Ny, Np + 1,°°°, N3)

The position vectors are obtained by

- s

n T 148 Sn (0= Ny Ny +1,°°° N3)
n €3

The time t, when the vehicle is at T, with velocity ¥, can be calculated

by
a .
tn-tNB-VJT% yl-x§2+sin'1xn2-V1-xnl-sin'lxm

or 3
3 -1

a
- 2 2 -1
tn tNB- }E."+ 1-xn2+sin xnz+ 1-:511 + gin Xm

depending on whether the vehicle returns on a short or long time ellip-

tical trajectory respectively where

£ I
°3*°n*¢°3*°i'2€3°°n
x111'1' 2a3

12-1 c3+on-ﬁ+o§-2:3.3n
n - -~ 2a
3

with n = Kys Np + 1,0e° Ny

The above calculations represent a complete solution for the problenm
of determining a reconnaissance trajectory for a vehicle launched at t,
from a certain launch planet, making a closest approach to a certain
target planet at t , and returning to the launch planet, Suppose these
initial conditions yield the value a = a; for the departing elliptical
trajectories which is of the short time type. Then by observing the

formula for long-time elliptical paths if
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T 1 t. = :é + V1 . + !-1 + V1 2 -1
T ' = % o n y - X, r'n X% v =X *sinTx

Sl co + Q1) + oo QUELY)

x':l.ln]'.' -231

co *+ QUtL,) - coQ(tda)
x = 1- 22

yields a solution for t},, there will in most cases be four distinct
possible reconnaissance trajectories with k = 0 taking the vehicle from
the launch planet at the same launch time t, and the same energy.

(1) short-time departing elliptical trajectory making closest

approach to target planet at t ca’ short time returning ellip-
tical trajectory withk = O,

(11) short-time departing elliptical trajectory making closest
approach to target planet at t . ,; long-time returning
elliptical trajectory withk = 0,

(141) long-time departing elliptical trajectory making closest
approach to target planet at thys short-time returning tra-
Jectory, k = 0,

(iv) long-time departing elliptical trajectory making closest
approach to target planet at tl,; long-time returning tra-
jectory, k.= 0,

It is conceivable that a reconnaissance wvehicle may be required to
visit more than one planet before returning to its launch planet, This,
of course, would require a very accurate guidance system., Such systems
will no doubt be developed, hence, we are motivated to consider s:uéh
reconnaissance missions, The statement of the problem shall be formu-
lated as follows:

Assuming that the basic assumptions I, II and IIT hold, find a
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trajectory of 2 Tshiele ‘aunched from the"center of a given planet at
the prescribed time t,2» which makes a closest approach to the first
planet to be observed at the prescribed time tycn and continue on a
Journey of visiting N-1 more planets in a prescribed order and return
to the launch planet,

An example of such a reconnaissance mission may be the following:
at toothe vehicle leaves the ‘center of the earth and makes a closest
approach to the first planet Venus at time t,.,. It then proceeds to
visit the remaining N-1 planets in the following order:

Mars

Earth

Saturn
Pluto

Jupiter
Earth
In this problem we shall make use of the following notation:
1]
(a) = moving frame of reference centered at center of j'th
J .
planet whose axes are kept parallel to the axes of a primary
inertial framez having origin fixed at center of sun
(J = 1’2,000 N)
(b) 7:1 = sphere of influence of j'th planet (j = 1,°¢+, N)
(e) —c"oz = position vector of launch planet and initial position
vector of vehicle at beginning of mission at time to2
(d) ?J,l ;J,z = position vectors of vehicle as it enters and

leaves Tj respectively at time t’:ll and *'32 (3 = 1,2,0¢¢, N)

(e) ﬁjl’ ﬁjz = position wvectors of vehicle as it enters and
leaves TJ respectively with respect to Z 3

(£) Tj1s Sjeas 5y = Position vectors of j'th planet when vehicle
enters T:_,, makes its closest approach, and leaves Tj respectively

at time tjl’ tju’ and tdz



JET PROPULSION LABORATORY ~H0 - TECHNICAL MEMORANDUM 312-130

(g)

(h)

(1)

(3)
(k)

()

(m)

(n)

(o)

(p)

(q)
(r)
(s)

E‘H 2.1 " position vector of launch planet and vehicle at
H

end of mission at time t'N-l-l,l

fj(t) = known position vector of j'th planet expressed as a
vector function of time (j = 0,1,°** N+1) j=Oand J=N+1

corresponds to the launch planet

.

rij Ty ¢ = arc of trajectory from ?i 3 to "r'k P

e m——— - =
rij rk,l = distance between rij and )

—t
E'J’ §410 € L3541 = vector trajectory parameters corresponding

to are Ty 5 Tyuy 1 (3 = 0, 1,°°°N)

s
5‘3 EJ = vector trajectory parameters corresponding to arc

?‘J 0 velocity of j'th planet when vehicle makes its closest

approach at time t;jc.h

? ’ ?‘ = velocity of vehicle as it enters and leaves T with
- g2 J

respect toz

’ ?' 3 = velocity of wvehicle as it enters and leaves T;j
2

1
with respect toz 3

T
1

d, = distance of closest approach to j'th planets surface

J
(3 = 1,2,000, N)

Rj = radius of j'th planet

).13 E G'J where m‘.i is mass of j'th planet

'Hp ; = anguler momentun of j'th planet.

A solution (first approximation but still very close to exact solution) then

proceeds by the following steps:
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(1)
(i1)

(iii)

(iv)
(v)

(vi)

(vii)

(viii)

(ix)

(x)
(xd)

(xii)

(xiii)

(xiv)

P
assume ¢ 02 1'11

calculate a , by (12) with Ry =Ccpo By =

is a short time elliptical path

a—
Cicar T = tyop = o

and ¢ = us
— — - —

calculate € , by (13) with Ry =C Ry=Cpc anda=a,

obtained from (ii)

2

o1 )

calculate h L by (14) with T o8 <.

calculate jo (1
CA 104 204 j

by,ZL obtained from (iv) where the sign is chosen so that h hP >0

Ly

replaced by T .. 02’ 0.

—
calculate €°1 by

o o2 CA
g - o —e = jg _
Ry =B Rp=Cpnt=4, €=¢€,
assume T, T,, is a short-time elliptical path which makes k = 0

circuits of the sun

calculate alz(tm) by (19) with k=0, T = tooa = ticar By = Syoar
—

Ry = Cpop = Poltye,) BBy = ¢y, P(tyn,) (known function of t,,)

t

calculate €12('°ch) by (13) with a = alz(tzca), Ry =500

By = Pyltygy)s Ry = cg0,Poltyy,)

caleulate 4 (ty0y) = app(ty,) (1= €°15(t,))

calculate ? (tZCA) by (16) if ¢ or (17) if ey

1cA” S2ca ca< C2ca
vith By = S0, B = Pylty0,) = £o(t0,) € = €5(ty,)

calculate h1

) by (14) with7¢ - ., replaced by . and

2(tac cA 1ca* C2ca
jl by j;.z(tBC A) vhere the sign is chosen so that h12' by, >0

calculate t,., explicitly by (26) with 8, =a 1. 33(t ) =a (tZCL)’

e

1 Lalts) (tm) h1 =T, o €1e & h,(t ) o B4 (650)
6 B(ts) - elz(tzcn) A N T
if above solution for t,,, does not exist (i.e., not reasonable)

N\
assume Iy, Tpy is a long-time elliptical path which makes k = 0

circuits of the sun; if t,., has reasonable value, proceed to (xxviii)
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(xv)
(xvi)
(xvii)
(xviii)
(xix)
(xx)

(xxi)

(xxid)
(xxiii)
(xxiv)
(xxv)
(xxvi)

(xxvii)

(xxviii)

(xxix)

(xxx)

(xxxi)

(xxxii)

replace (19) of (viii) by (20) and calculate alZ(tZCA)
replace (13) of (ix) by (21) and calculate 612(1:201)

2
ne 2ca) = 212(tpey) (1= €7,(¢0,))
calculate € 12“201) by step (xi) replacing (16) or (17) by (18)

calculate new values for --[le(t

repeat (xii) using the new table for !12(*'201)

calculate new value for t,,, by repeating step (xiii) using the aew
-— —
value for a,,(ty0,) 4)5(ty0))s B5(t50))s €ppltye,)
" i
02 T11
is a long-time elliptical path; if new value for tZC A is reasonsable,

if new solution for tzc o is 8till not reasonable, assume ¢

proceed to (xxviii)

repeat (ii) replacing (12) by (20) with k = O

repeat (iii) replacing (13) by (21)

repeat (iv) and (v)

repeat (vi) by replacing (16) or (17) with (18)

repeat (vii) through (xx)

if resulting wvalues of t2CA are still not reasonable repeat (1)
through (xxvi), (if necessary) replacing k = O with k = 1,2,...
except in step (xxii)

—m

calculate a,,, '812, €12 and h12 by substituting in a‘lz(tZCA)'

.812(1;2“) €,,(t,q,) andhy,(t,,) the first reasonable solution

for tzc A

P — -— s _
calculate V), and V,, by (5) with u =, R= clu, =3, ExE

-_— ol s

and h ='h,, €= €,os Tespectively

o B T, (24) withV, =V... V=TV, YoV
calculate ?11 and 712 by Q = 1CA = 1n and V = 12?
respectively

2 2. @

] { ]
calculate &, by (29) and (30) with o= ¥, ¥

_..l -

=V

calculate E by (31) with V v o 3 "

11'
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(xxxiii) calculate 4 = al( €1 - 1) - Ry

If d,> 0, repeating (vii) through (xxxiii) with § = 1 replaced by J = 2
vill yield d,. If d,>0 (vii) through (xxxiii) are repeated replacing j = 2 by

J = 3 ylelding d.,. This process is repeated until either all d,) O or stops when

J

the first di< 0, in which case, the next best value of t is calculated and

iCA

the process is continued. When all d,) O the calculation continues by calculating

€ty

J

(3 =1,2,...N) by (34) and (35) by replacing vl, v by V "31' , and

(2 = GJ' = h V - 1)“.1

calculate the amount of time (At) y the vehicle spends in 7 by (11) with

At = (M)J &= 'j’ = H-J. m =n3 = mass of j'th planet € = Ej

calculate t,. and t,, by (38) with t =t

3 32
At = (.f.vc)j (3 = 2,2,.00,0)

31' =t op = tsen

calculate 'P;l and 73'2 by (36) and (37) with w = pd,"?i ."?;1, @ =m,,

V2=V12
—-l —"‘(

5% = 5

), e, = P,(t.),

by (39) nthr =T, t;jl’c

calculate r and T,

31 32

F‘.l F' P‘ 52

The complete solution Fl;; ’ F’; } . {tn; can now be calculated by employing

the formulas developed on pages 27-30 in the same fashion as was done for the case

N = 1, Before this calculation begins €J 5417 h;j j+1' 85 5417 _j J+1(3=O.1....H)
and €J. b, a ,é (3=1,2,...N) and rjl, rjz, (31 ,02 should be refined.
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In conclusion, we notice the remarkable fact that if E is th_o total helio-
centric energy of a departing free-fall reconnaissance vehicle to one planet and back,
it may be possible to send the vehicle on a trajectory which will take it to N-1
more planets before returning to its launch planet without any appreciable change

in E.



JET PROPULSION LABORATORY =45~ TECENICAL MEMO #312-13)

' APPENDIX
One may proceed by the following method of successive approximations’
%o obtain values of €., h1 Cz_h;, € h3 and r r2 f’ (‘02 corresponding to
a round-trip reconnaissance trajectory to one planet and back which are
arbitrarily close to the exact values of these quantities, In cases where N>1
the process is very similar to that given below and hence will not be explicitly

written out.

Suppose ?i(k) ?1(k) altk), coe 13&) corresponds to the k'th approxima-

tion of these quantities. The k+l'th approximation can be calculated as follows:

g et Y o ()

(k+1) = = = (k) (k+1)
calculate 61 by (13) with Ry =c, Ry=T,"’, 8=0a

e g
calculate fl(k+l) by same formula used to calcula.te_g (k) with

j-"gl(k-l-l) - al(k”‘)(l _ €.l(k+l) ) '-E-o’ R, = (k)

calculate al(k*l’ by (12) with R,

— e
ca.lcula.teil(kﬂ) by same formula used to ca.lculate"ﬁ(k) with R, ="c_,
&) g 7(k+)
Ry =T, L=4

calculate a (k+1) (t (k+]‘)) by same formula used to calculate as(k)(t:,’(k))

with-f‘; =?2(k): -ﬁ‘a ’_ﬁ(ts(kﬂ)) o 1;3(“1) i tE(k)’ b EB(kﬂ)(t}(kﬁ))

calculate € 3(k+1) (ts(k+l)) by same formula used to calculate €3(k) (ts(k))
(k-l-l)(t (k'fl))

with Tibl =?2(k) _1-’(-2 -?(ts(kﬂ')) a=a

2
calculate 13(1‘*1)(1-.3(‘“1)) = ,3(k+1)(t3(k+l)) [1_ €3(k+1) (ts(k-rl))]

calculate ij(kﬂ)(t.‘,’(hl)) by same formula used to calculate ?B(k)(ta(k))
- jl’j’(k-rl)(t)(kd))'j.; . rz(k_) —i-z -='§(t3(k+1))

calculate h3(k+1)(t3(k+l)) by same formula used to calculate h3(k)(t3(k))
- 'g_‘ps(ku)(ts(ku))
calculate‘-h3(k+l)(t3(k+1)) by same formula used to calculate“ﬂ.’(k)(tB(k))

vith &, =7,), %, .’f(ta(“"n) h= h3(k+1)(t3(k+1))
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calculate t (k1) explicitly by same formula used to calculate ts(k) with

(k+1) (k+1)(t (k+1)y g !(hl)(t (k)y h_’.-ﬁ_j(ku)(%(ku))

o =e iy =8
?1(1:-1) A k=1 (k) ( G}(kﬂ)(ts(kﬂ))

and T, replaced by r 3. () and r 2

jl 'jl(ku)' —El =—£1(k+1)' €1 - €l(k+1)

(k+1) "("3(1:+1) i (1)

calculate explicitly by substituting the value of
(k+1) (k+1),, (k+1) (k+1),, (k+1)

ts into a; (t3 ), and ey (1;3 )

calculate .2(k+1) by same formula used to caluclate az(k) with \'&k'l) and

v, (k-1) (k)" ana 7, (k)

replaced by -’?1

calculate f (k+1) by same formula used to calculate € (k) with Vl(k'l) and

-\E(k -1)* replaced by Vl( k)* and Vz(k)'

(k+1)

calculate d by same formula used to calculate d(k) with € 2(1:) and a (k)

2
replaced by 4 £k+l) and az(k"'l)

)(k+1) by same formula used to calculate (&t)k with €2(k)' a2(k)
az(l|:+1)

calculate (At

replaced by € 2(k+1) and

calculate tl(kﬂ). tz(k+1) by (38) with At replaced by (At)tkﬂ)

calculate c < (k1) and cz(k+1) by substituting t (k+1) and t (ke+1) into-a(t)
calculate t" (k+1) F(Hl) by (36) and (37) with Vl = V 7, (k)" _2' :(k)'.
-1;2 (k+1) C. T (k+1)

2
(k+1) (k+1) - = (k+l) = = (k+1)

calculate r1 i 2 by (39) with ¢, =7 » Ty =Tc, .

‘91 -2 (k41) 2, = Enz

calculate Vl(kﬂ) 2(k+1) same formula used to calculate ? (k) and V ()

replacing k by k+l
A continuation of the above calculations letting k = 1,2, ... will yield values
of (1 ?2. ...-1;3. which will be arbitrarily close to the exact values of these

of these quantities.
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