B e e L

4-32 Trajectory Optimization for Powered Flight

Optimization problems in which the mass and exhaust velocity
programs and the burning time are varied, as well as the steering pro-
gram, can also be handled by elassieal variational methods, insofar as
we only secek stationary solutions. To find solutions that actually
provide maxima or minima requires, of course, a speeial investigation i
for each problem, since there may well be a stationary solution which

is not optimum or an optimum solution which is not stationary. 1 EA RTH SA TEL,.’TES _

When the exhaust velocity is a preseribed function of time e.g. -
constant as is, approximately, the case for chemical propulsion sys- AND RELATED ORBIT
tems) the sophisticated analysis for finding the optimum M(f) is of
little help, since it generally says only that impulsive burning is opti-

mal. A more detailed analysis, in which the characteristics of the AND PERTURBA T’ON THEORY

rocket motors, propellant tanks, et al. are taken into acedunt simul-
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practical method of earrying this ont involves the logical interconnec-
tion of a number of detailed engineering analyses, of which one is the . . University of California at Los Angeles
set of differential equations of motion for the trajectory. With the E
aid of a high-speed digital computer, a self-consistent solution of this i,
scheme of equations can be obtained, each such solution representing
8 possible and realistic missile. By variation of the input parameters, )
a number of optimization problems may be studied. | '
In the field of missile analysis, there is a need for both very com-
plicated models, like this design optimization analysis, and for very _
simple models, like the point part;cl.e. In fact,l, these te'nd to- comple- ; I 5-1 Astrodynamics 502
" ment each other. The latter provide analytical solutions in closed
form, from which valuable insights regarding trajectories can be ob- 4 5-2 Kepler's Laws and Newton’s Modifications of
. tained. They also furnish simple trajectory patterns which are of g Them 5-03
great value for the problems involving the simultanecus optimization :
of design and trajectory. The more complicated models, in turn, make 5-3 Two-Body Formulas 5-1n
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5-02 Earth Satellite Orbit and Perturbation Theory

5-1 ASTRODYNAMICS

The theory that underlies the determination of orbits and ephemer-
ides (tables of position) for space vehicles has deep roots in the scien-
tific culture of our age. Not only are the contributions of such men
as Newton, Laplace, Lagrange, and Gauss still basic to practical work
in celestial mechanics, but many of their equations and series survive
without change. From far earlier the deferents and epicycles of
Apollonius, Hipparchus, and Ptolemy, temporarily discredited along

. with the Ptolemaic system by the successes of Copernicus and Kepler,

have reappeared in modern perturbation theory in what we now refer
to as Fourier series and harmonic analysis.

Space navigation requires a diseipline, however, that.\ is at once
broader and nhrrower than celestial mechanies—broader in the inclu-
sion of new forces, new tools, and new data, and narrower in the
exclusion of certain portions that are useful in stellar and galactic
dynuinies,  Atcordingly we define astrodynamies as including the
parts of celestinl meehanies, geophysies, aerodynamies, exterior pro-
pulsion theory, electromagnetic theory, and observation theory that
bear upon the trajectories of astronomical objects and space vehicles.
In the general field of space navigation, astrodynamics is closely
linked with eommunication and control.

In astrodynamics it is necessary at the start to distinguish clearly
the qualitative orbits that are useful in design or feasibility studies,

for general discussions and estimates, and for the caleulation of rough

ephemerides from the precision orbits that are necessary for space
navigation and for obtaining improved geophysical data, ete. Much
excellent work has been done on ‘“feasibility” orbits, even to the
inclusion of one or more disturbing objects or the earth’s equatorial
bulge. Such trajectory work, however, introduces many simplifying
assumptions: that the moon is moving around the earth in a circle,
or is stationary in a rotating system, that the earth may be repre-
sented by a simplified gravitational model, that the disturbing objects
are in the vehicle’s orbit plane, ete. Precision trajectory work eannot

aceept these simplifieations,  The carth departs in countless ways,

great and small, from a sphere or ellipsoid; the coefficients of the
terms that express these departures must be evaluated, along with
the basic gravitational constant, with the highest accuracy attainable,
The moon's orbit differs from a cirele in such a complicated way that
no simple expressions can define its motion with sufficient approxima-
tion for more than a very short interval. The positions of launch
puints, targets, and observers, and even the lunar ephemerides are

"Kepler's Laws and Newton’s Modifications of Them  5-03

referred to a framework that is affected by precession and nutation;
they are therefore only briefly an approximation to the inertial frame-
work that is necessary as a reference in orbit work. In the handling
of perturbations many alternatives present themselves for considera-
tion before any one of them ean be deelared preferable or even ade-
quate; and the relation between the dynamical trajectory and accu-
rate observations, hardly even considered in connection with design
orbits, becomes essential to the correction of orbits and to accurate
prediction. :

Even in “feasibility” orbit studies there are important alternatives
to be considered. The possibilities of “inferential” methods, based
on the known integrals of the two-, three-, and n-body problems,
should be especially explored before “shotgun” caleulations with high-
speed computers are embarked upon. The latter technique has led
to some useful and ingenious discoveries, but there have also been
extensive calculation programs undertaken that could have been
shown to he valueless by advance use of “inferential” methods,

'y

5-2 KEPLER'S LAWS AND NEWTON'S MODIFICATIONS OF THEM

The threé¢ laws of Kepler are fundamental to a preliminary under-
standing of the orbit problem. These are as follows (Fig. 5-1):

1. The orbit of each planet is an ellipse with the sun at one focus.

2. The straight line joining a planet to the sun sweeps over equal
areas in equal intervals of time (the “law of areas”).

3. The square of the period of a planet is proportional to the cube
of its mean distance (the “harmonic law”). It is convenient to repre-
sent this law by the following formula,

P? =" (2x/k)%’
where P is the period, a is the mean distance between sun and- planet,

and 2x/k is the factor of proportionality, written in this form to make
a comparison with later expressions more convenient.,

While Kepler and his laws were establishing a basic part of the
foundation of what was to become celestial mechanies, Galileo, his
contemporary, was discovering equally ‘important terrestrial founda-
tions of mechanics. Galileo and Kepler respected one another and
even corresponded, but apparently their mutual respeet did not go
far enough for either to become really familiar with what the other
was doing. Accordingly, it was left for Newton to eombine the funda-
mental work of these two men in such a way as to discover the law
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1. Ellipse law

A

2. Law of areas
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3. “Harmonic law”

J_" : P = period
a = mean distance, or semimajor axis

Figure 5-1 Kepler's laws.,

of universal gravitation, the cornerstone of celestial mechanies. We
may state this law as follows:

Every particle of matter in the universe attracts every other partu-!e
with a force that varies directly as the product of their masses and

' . inversely as the square of the distance between them.

This law we may express by the following formula:

fia = fle = k*mymar /1153

where m; and m, are the masses of the two particles, ;5 is the vector
distance measured from m; toward ms, r5 is the magnitude thereof,
f12 is the force acting on m, in the direction of ms, and fy, is the equal
and opposite force acting on m, in the direction of m,, and finally k?
is the factor of proportionality, the constant of gravitation that is
sometimes represented by G.

i .. . g
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With the law of universal gravitation and the three laws of motion
that Newton had developed and expanded from a Galilean foundation,
Newton was able to redevelop Kepler’s laws. When he did so, he
found five important modifications in the Keplerian concepts.

1. The motion of each planet will be disturbed (“perturbed”) by
the attraction of each of the others, so that it will depart from the
orbit it would follow under the attraction of the sun alone. Figure 5-2
illustrates this kind of “perturbation.” A comet, let us say, is travel-
ing in orbit A, approximately a Keplerian orbit with the sun at one
focus. On one of the occasions when it crosses the orbit of Jupiter
it finds Jupiter nearby, and in accordance with the law of universal
gravitation the attraction of Jupiter becomes momentarily very large,
pulling the comet out of orbit 4 and hurling it off toward the sun
in a new direetion. Shortly thereafter the attraction of the sun again
becomes predominant and the comet takes up orbit B, which is sub-
stantially another Keplerian ellipse with the sun at the focus. It is
rare that the attraction of Jupiter has ag great an effect as that
illustrated, but much smaller effects are never absent. The attractions
of Jupiter and the other plancts are continually altering the orbits
of the comets, of the minor planects, and of the major planets them-
selves. The Keplerian orbits that these objects wenld follow, if each
were alone with the sun in space, are at best only approximations
to the actual paths. Thus a distinetion appears between the “two-
body problem,” including Keplerian orbits, and “perturbation theory,”

Figure 5-2 The two-body and three-body problems—perturbation.
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Figure 5-3 The perturbation due to an “equatorial bulge.”
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including the three-body and many-body problems. The two-body
problem is usually, but not always, a good first approximation to
the many-body problem.

2. The law of universal gravitation, and consequently Kepler’'s
laws, insofar as Newton had verified them up to this point, applies
only to part}clm. Newton was able to show, however, that the attrac-
tion for an exterior particle exerted by a spherieal mass homogeneous
in spherical concentrie lnyers will be direetly proportional to the total
mass of the sphere and inversely proportional te the square of the
distance of the particle from the sphere's center, The establislinent

" of this principle was evidently important to Newton’s verification of

the law of universal gravitation, which he found in comparing the
motions of the moon and the famous apple. 3

Now it happens that the sun, the carth, and the other planets are
very nearly homogeneous in spherical concentrie layers, so that they
may be treated as point masses when we are considering their attrac-
tions on relatively distant objects. Because of its rotation, however,

each of these objects has an equatorial bulge whose attraction on a

nearby objeet, such as a satellite, must be taken into account as a
perturbation. Thus the attraction of the earth’s equatorial bulge
produces an important set of perturbations in the motion of the moon;
the reaction on the earth is one of the causes of preecession and nuta-
tion.* For the moon the perturbations due to the carth’s bulge are

* Precession and nutation are conical and sinusoidal angular motions of the
earth’s axis, respectively.

Kepler's Laws and Newton's Modifications of Them 5-07

less than those due to the field of the sun, but for a nearby artificial
satellite, the bulge influence is far more important (Fig. 5-3).

3. Any of the conic sections (Fig. 5-4) is a possible orbit for an
object moving under the attraction of the sun alone. Thus comets,
many of which move in orbits that are indistinguishable from parab-
olas, were shown by Newton to obey the same laws as the planets.
Helioeentric hyperbolic orbits are rare, but when we deal with the
motions of the meteorites that plow into the earth’s atmosphere, or
of rocket spnce ships that arc attempting to leave the earth for
voyages into space, we find that the portions of the orbits close to

Figure 5—4 The conic sections,
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the earth are very nearly representable by geocentric hyperbolas.
The hyperbolie orbit, accordingly, will become inereasingly important
in the future.

4. Newton found that Kepler's sccond law was aceurate without
change, but in Kepler's third law he found that the constant of pro-
portionality between the square of the period and the cube of the mean
distance involved the sum of the masses of the two objects, m, and m.,
in a way not suspected by Kepler:

!
L

P? = 2x)%a®/k*(my + my)

For the plancets m; represents the mass of the sun and my the mass
of the individual planet, which is usually negligible in (ﬁnn;mrism\.
Accordingly, the modification that Newton found did not seriously
affect Kepler's third law as it applied to the planets. Far more
important was the fact that it could now be applied to the motions
of satellites about plancts, In these circumstances m, represents the
mass of the planct and m, the mass of the satellite, which is usually
as negligible in compdrison with the mass of the planet as is the mass
of the planet in comparison with that of the sun, The factor m, + my
now appears in many of the equations of the two-bedy problem in
such a way as to make them all applicable to planetocentric orbits -
when the pgrturbations are not too great.

5. Kepler's laws appear as integrals of the two-body problem.
There are, of course, many other such integrals. All of them provide -
us with equations that are useful in precision orbit work. Some of

- them are of such simple character as to be about as useful as Kepler’s

laws in “feasibility” studies. Of these the most conspicuous is the
vis viva integral or energy integral,

= em +mp (2 - 1)
r a

‘where V is the velocity of my, r is its distance from m, (previously

designated by ry5), and k, m;, my, and a have the significances pre-
viously assigned to them. This formula expresses the fuct that the
sum of the kinetic and potential energies is constant; V? is proportional
to the kinetic energy and the 2/r term represents the potential energy.

An illustration of the usefulness of the vis viva integral is found in
Fig. 5-5, which shows the orbits of a set of particles projected from
the same point with the same velocity. Since V and r are the same
for each of these orbits, it follows that the semimajor axis, a, will also

o RS B S S A i BB
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i Figure 5-5 Clovelovily orbils,

be the same for each. Let us suppose that the circular orbit is the
orbit of a satellite of the earth projected horizontally and just above
its surface. The ve]oclty will then be slightly under 5 miles/sec. 1f
the angle of projection is somewhat above the horizontal, the projectile
will rise to a height and then fall back to the surface, with a hypo-
thetical portion of the orbit buried inside the earth. If the angle of
projection is higher, the particle will rise to a greater height but come
back nearer to its starting point, and if the angle of projection is 90°,
the particle will rise straight up and fall straight back. For each of
these orbits, of course, we arc neglecting the rotation of the earth
as well as the effect of drag. It follows that the height to which
the vertically projected object will rise is equal to the radius of the
carth., _

The conic sections are illustrated from another point of view in
Fig. 5-6, in which we have a family of orbits with the same tangent
but different velocities at their common point. Let us suppose for
illustration that the circle represents the orbit of the earth, which
is very nearly circular. On this assumption the earth’s velocity of
18.5 miles/sec is directed at right angles to the sun. The effect of
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Ellipse

Figure 5-6 Cotangential conic orbits,

the sun's attraction is to cause the earth to fall 7 in. toward the
sun in the same second that it travels 18.5 miles along the tangent,

The combination of the two is just right to bring the earth back to
the same distance that it had before. - And so, second by second, the

earth falls toward the sun but never gets any closer.

Let us suppose that the carth’s veloeity is slowed down to about
11 miles/see. The sun's effeet, of % in., will be unchanged, and
so the earth will fall closer to the sun, taking up as a path the smaller

- ellipse shown in Fig. 5-6. As it falls toward the sun it will gain in

velocity, until at the point opposite the start it will have gained
so much that the centrifugal foree will exceed the gravitational pull
of the sun, even though the latter has inereased also. At this point,
then, the earth will begin to elimb away from the sun, slowing down
as it goes until it arrives back at the same point with the same
velocity in the same direetion.

If we couid slow the earth down to zero, it would fall 14 in. toward
the sun in the first second and considerably more in ensuing seconds,
speeding up until it reached the sun in about 2 months. This, happily,

Two-Body Formulas 3 5-1

is one of the less likely ways in which the earth will come to an end.
Other causes will more strongly influence the earth’s longevity.

If we should speed the earth up to about 24 miles/sec, the 1§ in.
by which it would fall to the sun would be insufficient to bring it back
to the same distance, and it would find itself elimbing away from
the sun in the larger of the two ellipses shown in Fig. 5-6. Slowing
down to the point opposite the start, it would find there that its
centrifugal force was insufficient to overcome the gravitational attrac-
tion, though the latter would be less also. Accordingly, the earth
would begin to fall back toward the sun, reguining speed as it went
until it reached the same point with the same velocity as before.

An increase in the earth’s velocity to 26 miles/sec would carry it
off on the parabola shown in Fig. 5-6. Still greater velocities would
carry it away from the sun along a hyperbolic orbit such as the one
shown. In either case the attraction of the sun would be insufficient
to slow the earth down enough for it to be caused to return.

|
5-3 TWO-BODY FORMULAS ’

The “elements” of the two-body orbit of an objeet are a set of six
independent constants that specify the orbit's orientation in space,
its size and shape, and the position occupied by the object at a
specified time or the time at which it is at a specified point. For
;,w(-onbrlc orbits such a set (Fig. 5-7) consists in pa:t of the three
“orientation” clements:

8, tlw longitude of the node, measured in the plane of the equator
from the directicn of the vernal equinox to the direction of the
ascending node, or intersection of the orbit with the ecuator—
for heliocentric orbits substitute “ccliptic” for “equator,”

7, the inclination, or angle between the plane of the orbit and the
plane of the equator,

w, the argument of perigee, or angle between the direction of the
ascending node and the direction of ‘the perigee—*“perihelion”
for heliocentric orbits,

The remaining three elements are the “dimensional” elements:

a, the semimajor axis or mean distance,

e, the eccentricity, or the ratio of the distance from the center of
the orbit to the focus (the center of the earth) to the mean
distance, and

T, the time of perigee passage.
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Figure 5-7 The elements of a geceentric orbit.
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These six constants are often replaced by others, in part or alto-
gether. For example, the orientation unit vectors,

P, directed to perigee,

Q, parallel to the velocity vector at perigee, and

W, perpendicular to the orbit plane and making up a right-handed
system with P and Q, are often used as crientation elements in
place of &, 7, and w. -

Sometimes used in place of a or e are (Fig. 5-8):

g = a(l — e), the perigee distance, or

p = a(l — €?%), the “paramecter” or semi-latus rectum, or

n =k, Vm, + my/a*® the mean angular velocity, or “mean
motion,” where k, is the gravitational econstant used with
geocentric orbits and my and my are the masses of earth and
vehicle, respectively,

Xy — axis
qle

Directrix

Figure 5-8 Coordinates in the plane of a two-body elliptical orbit
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The elements of the orbit serve to tie together variables that include
(Figs. 5-7, 5-8): '

z, y, z, rectangular coordinates referred to the equator and equinox,
 Tu, Yu 20, Tectangular coordinates referred to the orbit plane and
perigee,
7, the radius vector, .

and the three angles or “anomalies,” Xy

v, the “true anomaly,”
E, the “eccentric anomaly,” and
M, the “mean anomaly.”

To illuatrail.e some of the varied formulas that are useful in orbit
work, we collect those that are used to caleulate x, y, and 2z, from the
elements a, ¢, and T, and the components of P and Q, given also { and n;

M=nt-1T)
E—esink =M

This is “Kepler’s equation,”” which must be

solved here by successive approximations.
T, = a(cos Ff — ¢) .
Yo =aV 1l — ¢ sin !5"]?1“' e g

=1z, 4+ y.Q.

Y =lz.Py + y.Q, Fig. 5-7

z=1x,P, + .UwQ:

There is a similar set of formulas for the hyperbola. There are
allied formulas to obtain z, y, and z, or the total velocity, angle of
elevation, ete. There are alternative formulas and check formulas,
Choice between them is often dictated by simplicity, by special cir-
cumstances such as small inclination, small eceentrieity, or regression
of the nodes due to perturbations, or by the nature of the initial
conditions. The preceding definitions will help the engineer or physi-
cist translate the language of classical astronomy. For detailed tech-
niques of orbit caleulation, the reader is referred to the references
at the end of this chapter.

5-4 PERTURBATION THEORY

Perturbations are usually thought of as being those parts of the
accelerations of an ohject that cannot be accounted for by a simple
inverse-square central force field. If the perturbations were elimi-
nated, the object would move in a simple conic orbit defined by the

Perturbation Theory 5-15

usual two-body elements. Such an orbit may be taken as a reference
for the integration of the perturbations in determining the actual path.
Two-body reference orbits may be replaced on occasion by reference
orbits based on other integrals than those of the two-body problem.
These integrals may be based on the three-body problem, on special
integrals that take into account some of the effects of the carth’s
equatorial bulge, or on gravity-free drag orbits. The purpose of the
reference orbit, whether it is used for a long interval of time or a
short one, is the reduction in size of the accelerations that have to
be integrated.

Often the perturbing forces may be reduced greatly by relatively
simple devices. For example, the sun's dircet attraction at the posi-
tion of the moon is about twice that of the earth, and so, if the earth
and the moon were not in motion, the sun would pull the moon away
from the earth. The sun’s attraction for both the earth and the moon,
however, acts primarily to keep them moving along curvilinear orbits
instead of along tangents (Fig. 5-9). Only the difference between
the sun's gravitational field at the position of the moon arid the sun’s
field at the position of the earth is left over to serve as a perturbing
foree on the moon, provided the moon’s motion is regarded as geo-
centrie, It is by the®device of shifting from the sun's central foree
field to the carth's central foree field that this reduction of the per-
turbations is accomplished. The perturbing foree is still about %o
of the earth’s attraction, however; it is small by comparison but still
a very large perturbation as perturbations go.. The result is the
complicated motion of the moon that was referred to in Section 5-1.
For satellites close to the earth the attraction of the sun approximates
its attraction for the earth, so that the perturbing effect will be far
less than it is on the moon. The effect of the earth’s equatorial bulge,
on the other hand, will be the greater because of that same proximity.
Other perturbing effects may be supplied by thrust, drag, other acro-
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Figure 5-9 The moon’s hieliocentric motion.
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Figure 5-10 The ecarth's equatorial bulge and the direction of gravity.

dynamie forces, eleetromagnetic forces, radiation pressure, the dif-
ference between Einstein and Newtonian gravitation, ete.

The primary gravitational effects of the earth, the moon, the sun,
and the planets are such that we think of the masses of the attracting
objects as concentrated at their centers, so that the resulting accelera-

tion terms are directly obtainable.from the inverse-square law of

universal gravitation. But for each of these terms we must determine
the best available value of a constant coefficient that is essentially
the constant of gravitation multiplied by the mass of the object.
If the attracting objeet is fairly near, as is the earth for a satellite,
it must be represented by an ellipsoid of revolution, with its mass
distributed homogencously in ellipsoidal concentric layers, instead of
the spherical ones that enable us to consider that all the mass is at
the center. The attraction of the earth, assumed to be an ellipsoid

of revolution, may be developed in series, evaluating the coefficient of

the second harmonic along with the primary, or zero-order, attraction
that is obtained when the earth is assumed to be spherical. This
cocfficient is closely ‘related to the “flattening” or “ellipticity” or
“oblateness” of the earth, and to the coefficient of the principal latitude
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term in. the expression for the acceleration of gravity at sea level.
If the satellite is very near the earth, and if the highest precision is
needed, we take into account the cocflicient of the fourth harmonic
in the attraction of the ellipsoid of revolution, and perhaps alse
corrections to this figure ranging down to “local anomalies” due to
inhomogeneities in the earth’s crust. Each correction must be ex-
pressed by a mathematical term of selected form and will contribute
a coefficient to be evaluated. So also must thrust, drag, ete., be
approximated by mathematical expressions for the actual accelera-
tions encountered, and each will require the determination of nu-
merical coefficients,

Another device that will reduce the perturbation terms is found
in shifting the center of attraction that is to be used in conneetion
with the two-body reference orbit away from the center of figure
of the attracting object. For example, the path of an objeet in free
fall in the vieinity of the earth will be along the direction of gravity
(Fig. 5-10), rather than toward the center of the earth. We find,
accordingly, that the perturbation terms will be reduced if we remove
the reference center of attraction to some point on tlre line. defined
by the direction of gravity. The same device will be useful in con-
nection with ICBM trajectories.

One of the well-known effects produced on a satellite orbit by the
perturbations of the bulge at the cquator of the earth is the regression
of the nodes. If a satellite is moving in a predominately eastward
dircetion (Fig. 5-11), it will eross the ¢ cquator at each passage a little

Figure 5-11 The regression of the nodes,



Figure 5-12 Exploration of the regression of the n()lﬂf‘!.
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bit farther west than the time before. This regression of the nodes
is in addition to any apparent westward motion due to the eastward
rotation of the earth heneath the orbit.  Figure 5-12 supplies us
with an explanation of this phenomenon. " Let us suppose that a
satellite is proceeding along a path from A to B, so that it would
cross the equator at £, if there were no perturbations. Let.us now
suppose the effect of the attraction of the bulge to be simplified into
an instantancous acceleration that acts on the satellite when it reaches
point E. /As a result, it crosses the equator at £» and proceeds to F,

where a compensating simplified acceleration from the bulge diverts

the satellite into the path (', which crosses the equator at Qg
The effect of the perturbations of the bulge, accordingly, is to make
the node regress from £, to £,

The effeet of drag on a satellite orbit may be illustrated by Fig.
5-13. Let us suppose that A4, is the satellite orbit and that drag is
concentrated in a small region near the perigee A. The effect of the
drag is, of course, to diminizh the velocity at A, with the result that
the satellite does not sueceed in rising up to 4., but only to A%
(compare the vis viva integral of Section 5-2). Since the semimajor
axis is diminished, the period will also be diminished, in aceordance
with Kepler's third law, and the satellite will return to 4 sooner than
it would otherwise. Whereas the velocity at A4 is diminished, the
average velocity is actually increased. :

Figure 5-13 may also be used to illustrate the basie problem tlmt
will be encountered when establishing a satellite in a 24-hour equa-
torial orbit for commanication purposes. Let Ad. represent the orbit
_actually achieved. Because of the inexactness of the burnout velocity
in both magnitude and direction, it will depart from the desired orbit

ot i W . 1l W < e e
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in two principal ways: (a) It will not be perfectly circular, and
(b) it will not have a period of exactly 24 hours. The effect of a
small eccentricity will not be disastrous but will merely cause the
satellite to oscillate -back and forth with reference to a fixed point
on the equator on the surface of the earth. Additional oscillations
will be introduced by perturbations. But an error in the period will
cause the satellite to depart indefinitely from the desired cquatorial
reference point, so that it will eventually become useless for a com-
munications base, or for whatever similar purpose the 24-hour orbit
is desired.

To adjust the period, corrective thrusts will be necessary. At the
same time we might well seek to reduce the cecentricity of the orbit
in order to reduce the oscillations of the satellite. 1f the period is
too great, we will accordingly make our corrective thrust at 4, reduc-

Ay

Figure 5-13 Perturbative effects of thrust or drag on eccentricity e, mean distance
a, and period P. .
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Figure 5-14 Advance of perigee or perihelion (rotation of the line of apsides).

ing both-velocity and cceentricity. 1f the period is too short, however,
we will make the corrective thrust at 4, in a way that increases the
velocity, launching the satellite into the larger circular orbit with
resulting increase of the period.

Still another perturbation, the advance of perigee, is illustrated by
Fig. 5-14. (In heliocentric orbits this is the well-known advance
of perihelion that is partly due to Einstein effects.) The actual path
of the object is indicated by positions 0, 1, 2, 3, 4. At position 1 let

us calculate an “osculating” elliptic reference orbit, i.e., an elliptic !
orbit that has the same position and velocity as the actual orbit.

This is the orbit the object would then follow if all perturbations
ceased. Its perigee and apogee are on the line PiA,. By the time
the object reaches position 2, at its apogee, the reference orbit will
have the perigee and apogee on the line P,A;. Finally at position 3

[ B et R
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let us determine a new osculating elliptic reference orbit, which in
this instance will have its perigee and apogee along the line PyAj.
The perigee, accordingly, will have advanced through the are P,Pj.

5-5 PERTURBATION CALCULATIONS

The perturbative accelerations may be integrated numerieally, or
they may be expanded into series and integrated term by term. The
numerical integration process is known as “special perturbations,”
and the series integration method is known as “general perturbations.”
The latter procedure can be handled only by successive approxima-
tions, since the series expressions initially integrated must be based
on some kind of zero-order approximation. The result will be “first-
order perturbations,” which are in effect series that can be resubsti-
tuted into the basiec expressions to obtain “second-order perturba-
tions.” Numerical integration will achieve similar results if the aceel-
erations initially integrated are obtained, nppmxinmtvly, from a zero-
order approximation. But in numerical integration we may evaluate
the integrals at each step and use these, instead of the zero-order
approximation, for the ealculation of the accelerations. The step-by-
step process, then, yields accurate results except for the steady ac-
cumulation of error in the summation processes involved in integra-
tion. For satellite integrations, with so many revolutions achieved
in such a short space of time, the accumulation of error is disastrous,
General perturbations, however, have the disadvantage of requiring
a great many terms to achieve the same accuraecy. It is probable
that the best means of handling satellite orbits will be based on some
combination of the two techniques, with the aid of improved approxi-
mations beyond the two-body reference orbit.

Whether we seek to integrate special perturbations or general per-
turbations, we must first make a decision about what we shall inte-
grate. Three principal alternatives present themselves.

1. We may integrate the sum total of the accelerations, with no
reference to an osculating or other reference orbit. Such an integra-
tion is not strictly a perturbation method, sinee the term perturbation
implies that a distinction is made between the principal terms and
the perturbation terms in the accelerations. If we integrate the total
accelerations, such a distinction would be valueless. By convention
the integration of the total aceelerations is nevertheless referred to
as a perturbation method and is known as Cowell’s method. It was
first used by Cowell and Crommelin in their prediction of the return
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of Halley's comet in 1909. Most lunar trajectories have been inte-
grated by this method, although it is easy to show that other methods
are preferable. The method is. applicable only to special perturba-
tions, since general perturbations require the use of a reference orbit.
In Fig. 5-14 Cowell’s method would be represented by the heavy line
or actual path only and would make no use of the osculating elliptic
orbits there represented.’

2. We may integrate the departures from the osculating refer¢nce
orbit. In special perturbations the principal representative of this
process is called Encke’s method. Starting at position 1 in Fig, 5-14
we would calculate successive positions, probably equally spaced in
time, in the reference ellipse whose major axis is indic:mtled by P;A4,.
We would then integrate the perturbative acceleratiohs into per-
turbative diplacements, with which to correct the two-body positions
in the reference orbit to the actual positions in the actual path. By
the time we reached position 3 we would probably find that the actual
position was'so far from the reference two-body positions that the
perturbative accelerations, which would inclade terms resulting from
the displacement as well as terms introduced by the non-two-body
forces, would be as large as the total accelerations. Then Encke's
method would no longer be advantageous as compared with Cowell’s
method. We would then calculate a new osculating reference orbit,

with majér axis PyA,, and start over with our perturbations greatly

reduced in size.

3. The method of variation of parameters avoids the gradual in-
crease in the perturbation terms that are due to the inereasing dis-
placement of the actual position from the reference position, thus
avoiding the periodie large corrections in the reference orbit, It
accomplishes these ends by causing the reference orbit to vary grad-
ually in such a way that it always yields exactly the same position
and velocity as those associated with the actual path, That is, the
varving reference orbit is always “osculating.” The constant elements
of the two-body problem beeome varying parameters defining the
varying orbit.  The variations of the parameters are determined di-
rectly from the perturbative aceelerations,

- When the perturbations are very large, neither Encke’s method
nor the method of variation of parameters offers any advantage over:

Cowell’s method, and the last should be used because it requires less
calculation. When the perturbations are small, however, and espe-
cially when the two-body motion is very rapid, Cowell’s method is
disadvantageous and may even be incapable of handling the problem.

Perturbation Calculations 5-23
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This circumstance we encounter with the orbit of the minor planet
Icarus. This little planet comes closer to the sun than any other,
passing about halfway between the orbit of Mereury and the sun.
When it does so, it mpves very rapidly and its two-body aceelerations
become large and unmanageable. Table 5-1 indicates what one of
its integration tables would look like if we attempted to use the same
10-day interval that can be used at aphelion. ' The table is clearly
quite unusable, and the interval would have to be cut to a small

TABLE 5-1
Cowe_ll's Method versus the Method of Variation of Parameters

Cowell's method

i 83 8% %%
. : B
June 13 | — 1.00539 — 0.27914
— 0.56078 — 0.54620
June 23 | — 1.57517 — 0.82534
— 1.39512 — 2.21389
July 3 — 2.97029 — 3.03923
— 4.43435 | +34.74936
July 13 | — 7.40464 +31.71013
+27.27578 —75.06246
July 23 +10.87114 —43.35233
Variation of parameters
i sy, | 8%, e,
June 13 7| —0.000,0023 "= 7
+ 1 + 1
June 23 —0.000,0022 - 6
N - b + 16
July 3 —0.000,0027 +10
+ 5 +15
July 13 | —0.000,0022 +25 |-
+30 —58
July 23 +0.7.00,0008 —33
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fraction of a day before the integration could be carried through.

At such an interval the accumulation of error in the integration would

be prohibitive. By contrast the variations of the parameters, of
which one is shown, are very small, even though two more decimal
places are carried than in the Cowell table. It will be observed,
however, that the same oscillation of sign begins to appear in the
variation of parameters table, requiring careful calculation at a re-
duced interval to hold the error down to an acceptable standard for
precision work. ;

The same disadvantage of Cowell’s method appears in lunar ﬂlght
trajectories. At the start the perturbations of the moon are actually
quite negligible, so that by Encke’s method or the variation of pa-
rameters a simple two-body orbit could be used in the Yarly stages.
By Cowell's method the whole integration must be performed at
extremely short steps because of rapid changes which would be taken
fully into account by a two-body orbit if it were used.

1

- 5-6 OBSERVATIONS AND CORRECTION i

Since purely ballistic trajectories are subject to rather large un-
certainties because of burnout errors in position and velocity, accurate
observations become an essential part of the programming of subse-
quent corgective thrusts.

In this connection we must think of astronomical rather than navi-
gational accuracy, i.e., of observations that are good to 0”.1 rather
than to 1.0. Such accuracy will require differential measures of the
position of the vehicle against a stellar background. Thus far at-
tempts to get anything approaching this accuracy in satellite observa-
tion work have been near failures, if not complete failures. The
ballistic cameras along the Cape Canaveral chain have been more

successful, and claims of observational accuracy down to about 27,

have been made. Observations of such an order of accuracy must
obviously be corrected painstakingly for refraction, or at least for

, differential refraction, aberration, and various other physical or in-

strumental errors.
- Since the accuracy of 2” corresponds to 1 part in 105, these optlca.l
observations offer a stirring challenge to modern electronic means

of observation. But it is much to be hoped that electronic observa-

tions of radial distance and velocity, that is, “slant range” and “slant
range rate,” may eventually achieve the accuracy of astronomical
observations. They offer much to the simplification of preliminary
orbit determinations and to the accuracy of precision orbits. Rocket-
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Figure 5-15 Effective collision radius,

\

unit when we shift to geocentric orbits. The distinction between the
' - equatorial radius and a laboratory unit related to the centimeter,
- however, is not so serious’ as in heliocentric orbit. problems. The
geocentric gravitational constant is determined from the acceleration

of gravity, as a more accurate source of information than even the -

motion of the moon, and must take into account very accurately the
effect of the earth’s rotation and of the resulting equatorial bulge.*

58 INFERENTIAL METHODS VERSUS EXTENSIVE CALCULATION

In preliminary studies we may make effective use of two-body or
three-body integrals and infer results that might at first seem. to

require extensive calculation. One of the useful tools in inferential.

work is the “effective radius” (Fig. 5-15). If a two-body trajectory,
ignoring the effect of the moon's attraction, indicates that a rocket

. will pass by the moon in a straight line at the distance b, the effect

" of the moon’s attraction may often be approximated by the hyperbola
to which the straight line is an asymptote. If the minimum distance

in the hyperbola, r, is the actual radius of the moon, the moon’s °
* 8, Herrick, R. M. L. Buker, Jr,, and C. G. Hilton, “Gravitational and Related ;

Constants for Accurate Space Navigation,” Proceedings of the Eighth Interna-
tional Astronautical Congress, Barcelona, 1957, Vienna, Springer-Verlag, pp. 197-
235, 1958; American Rocket Society Preprint, No. 497-57; U. C. L. A. Astron,
Papers, 1, No. 24, 297-338 (1958).
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effective radius is b. The moon as a target is made larger, with an
effective radius from one to three times its actual radius, depending
on the velocity with which the rocket approaches the moon. If our
calculations take into account the moon’s attraction, of course, the
closest approach should be compared with the moon’s actual radius
rather than its “effective radius.”

The calculational technique, as opposed to the inferential one, has
been very effective in disclosing previously undisclosed facts. One
of these discoveries is illustrated by Fig. 5-16. Let us suppose that
the design orbit for a trip to the moon is the intermediate one of the
three shown, with a planned encounter with the moon at T's. If the

‘actual velocity is greater than the design velocity, the rocket will

travel in the outer one of the three orbits, arriving at the moon's
distance earlier and encountering the moon at T';. If, however, the

B

Figure 5-16 Lunar impact geometry in lunar orbit plane.
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Figure 5-17 Paths followed during
extraction of orbital energy from the
moon by an object pusai_ng nearby.

Earth

/

actual velocity is less than the ign velocity, the rocket will travel
on the smaller of the elliptic os, arriving at the moon’s distance

- later and encountering the moot Ty. Thus the range of velocities

that permits impact on the mois larger than would otherwise be

. the case, because the moon’s mn compensates for the spacing of

the trajectories. This effect wascovered by a number of men, but
probably first at the RAND Coration by H. Lieske; the actual
drawing in Fig. 5-16 was dony L. G. Walters of Aeronutronics
Systems, Inc. The region in vh impact could be made is exag-

.gerated by the drawing.
" Sometimes inferential methoae more effective than calculation,’

however, and give warning thatensive calculation would be un-
productive. Figure 5-17 illuses such a circumstance. It was
proposed that a rocket sent up ie by the moon could be swung by
the moon into an interplanet: orbit, with augmentation of its
energy. In fact, the mpst that be gained from the moon is twice
its velocity of about 1.2 miles, Unfortunately, the problem re-

quires very careful maneuverim that the moon will be passed at

-
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which the earth’s attraction is balanced by the moon, with a zero
velocity, it would simply be unaffected- by the moon’s sphere of
primary attraction, which would pass on, leaving the vehicle to fall
back toward the earth. The only place to enter the region of the

moon’s primary attraction with a zero geocentric velocity would be

directly ahead of the moon, in a sort of circular window whose radius
would be equal to the moon’s effective radius. Then the hyperbolic
orbit would encounter the surface of the moon.

!
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THE VANGUARD IGY
EARTH SATELLITE LAUNCHING
TRAJECTORIES AND ORBITS

JOSEPH W. SIRY
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é-1 The IGY Satellite Launching Problem 6-01

6-2 Satellite Launching Vehicle Trajectories 6-05

6-3 Optimization Analyses 6-14

6-4 Launching Location and Time and Their Effect
on Orbit Position 6-38

Appendix 6A Coordinate Systers for Satellite
Location 6-53

6—1 THE IGY SATELLITE LAUNCHING PROBLEM

The earth satellites established during the International Geophysi-
cal Year will increase our knowledge of the world around us. The
selection of the orbits of these satellites is governed by various factors, .
Some of these have to do with the satellite launching vehicles. Others
are related to the needs of the satellite tracking programs. Still
others are functions of the needs of the scientific experiments to be

6-01
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