The Voyage of Mariner 10

Mission to Venus and Mercury

James A. Dunne and Eric Burgess

Prepared by
Jet Propulsion Laboratory
California Institute of Technology

Introduction

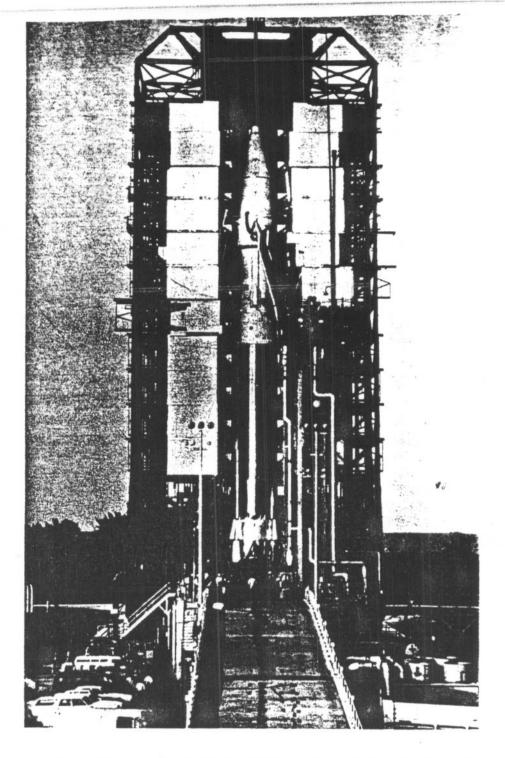
RARELY IN THE LIFETIME of an individual is he privileged to witness and be part of an historic first for mankind. Such has been my privilege. Even more rarely is one privileged to be part of such a dedicated, competent, and professional group as comprised the Mariner Venus/Mercury Project Team. It was a moderately small group of diverse talents, dedicated to accomplishing an historic scientific voyage to Mercury by way of Venus, and to do it within tight schedule and cost constraints.

These people met and exceeded the challenges and further distinguished themselves several times during the flight of Mariner 10 when emergencies were encountered which threatened the success of the mission. Their professional response to these emergencies proved the competence of this truly remarkable team of NASA, Boeing, Philco-Ford, Planning Research Corporation, university, and Jet Propulsion Laboratory people. Without this team the exciting discoveries made on the Mariner 10 flight to Venus and Mercury would not have been possible.

W. Eugene Giberson Mariner Venus/Mercury Project Manager Jet Propulsion Laboratory

Chapter 2 Mariner Venus-Mercury Mission

THE GRAVITY-ASSIST trajectory technique which was needed to obtain an economically acceptable mission to Mercury resulted from over 20 years of speculation, scientific research, and engineering development. The technique allows a spacecraft to change both its direction and speed without expenditure of propellant, thereby saving time and increasing scientific payload on interplanetary missions. By its use an acceptable payload could be launched to Mercury by an Atlas/Centaur. The much larger and more costly Titan III C/Centaur would be required for a direct flight to the innermost planet.


The concept of gravity-assist interplanetary missions first received serious attention in the literature of the 1950's, though multiple-planet orbits had been considered during the 1920's and 30's.

In the following years the concept was utilized mainly in studies of round-trip interplanetary flights in which the spacecraft leaves the Earth, flies by several planets, and returns to Earth. The first systematic development of the gravity-assist technique was performed at the Jet Propulsion Laboratory, Pasadena, California, in the early 1960's. Previously, such multiple-planet trajectories had been sought by inspecting computergenerated listings of parts of flight paths, such as the Earth-Venus and Venus-Earth components, and matching them in regard to velocities and time. An Earth-Venus-Earth round trip had been discovered by this method, and JPL trajectory

designers next developed a mathematical technique for searching out gravity-assist trajectories so that they were able to program the equations for processing on a digital computer. They soon discovered the existence of Earth-Venus-Mercury trajectory opportunities for 1970 and 1973, but found that the gravity-assist trajectory was extremely sensitive to errors in aiming the spacecraft toward the first planet, suggesting that a new kind of guidance might be necessary to make the technique practicable. Further analysis revealed, however, that there were actually no barriers in contemporary guidance technology to prevent a multiple-planet mission. As a result, detailed plans and a navigation strategy for the 1970 Venus-Mercury opportunity were prepared, establishing its practical feasibility as a space mission.

Early in 1970, Guiseppe Colombo of the Institute of Applied Mechanics in Padua, Italy, who had been invited to JPL to participate in a conference on the Earth-Venus-Mercury mission, noted that in the 1973 mission the period of the spacecraft's orbit, after it flew by Mercury, would be very close to twice the period of Mercury itself. He suggested that a second encounter with Mercury could be achieved. An analytical study conducted by JPL confirmed Colombo's suggestion and showed that by careful choice of the Mercury flyby point, a gravity turn could be made that would return the spacecraft to Mercury six months later.

Fig. 2-1. The Atlas/Centaur provided the necessary launch capability for the Venus swingby to Mercury.

In June 1968, the Space Science Board of the National Academy of Science completed a planetary exploration study in which the mission to Mercury via Venus was endorsed. The Board recommended that a 1973 launch opportunity be aimed for and suggested some of the scientific experiments that might be carried out on the mission.

Approved by NASA in 1969, the mission which resulted from this recommendation involved the

scientific community early enough for scientists to contribute to decisions concerning design of the spacecraft and selection of its subsystems. The possibility of later conflict between mission constraints and science needs would thereby be reduced.

The National Aeronautics and Space Administration selected a group of scientists to represent the several disciplines that would be involved in the science payload of a mission to Mercury via Venus, and a Science Steering Group was officially formed in September 1969. Its purpose was to recommend objectives for and plan a good science mission within tight monetary constraints, coordinating the requirements of teams for the individual instruments and participating in project design and tradeoff studies relevant to mission, spacecraft, and flight operations.

In January 1970, a Mariner Venus/Mercury project office was established at JPL, under the direction of Project Manager Walker E. Giberson. Experiments were selected by July 1970, and by July 1971 a contract was negotiated with the Boeing Company, Kent, Washington, for design and fabrication of two spacecraft: a flight spacecraft and a test spacecraft.

Overview of the Mission

The mission plan called for launching the spacecraft with an Atlas SLV-3D/Centaur D-1A launch vehicle (Fig. 2-1) between October 16 and

November 21, 1973. From such a launch window the spacecraft could encounter Venus between February 4 and 6 and Mercury between March 27 and 31, 1974.

The proposed trajectory relied upon Venus's gravitational field to alter the spacecraft's flight path and speed relative to the Sun, such that the reduction in velocity would cause the spacecraft to fall closer to the Sun and therefore to cross Mercury's orbit at the exact time needed to encounter the planet (Fig. 2-2). Closest-approach altitudes at Venus and Mercury would be 5000 and 1000 km (3100 and 620 mi), respectively.

To meet the demands of the gravity-assist technique, Mariner Venus/Mercury had to be launched on an orbit around the Sun that would intercept the planet Venus with high precision. The spacecraft could not carry sufficient propellant for very large maneuvers after the encounter with Venus, and the trajectory to Venus demanded new levels of accuracy. At least two maneuvers to correct the trajectory would be needed between Earth and Venus and two more between Venus and Mercury. Flyby of Venus had

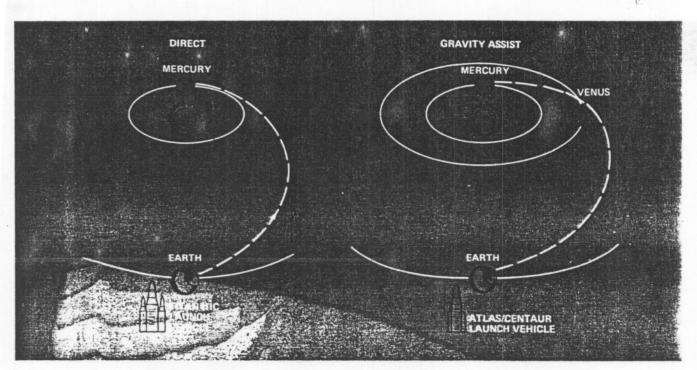


Fig. 2-2. The gravity-assist trajectory to Mercury uses the gravity and orbital motion of Venus to provide a slingshot that hurls a spacecraft into the inner Solar System without further use of propellants except for minor corrections to the trajectory. A direct flight to Mercury would require a much larger launch vehicle to deliver the same payload of scientific instruments without this Venus assist.

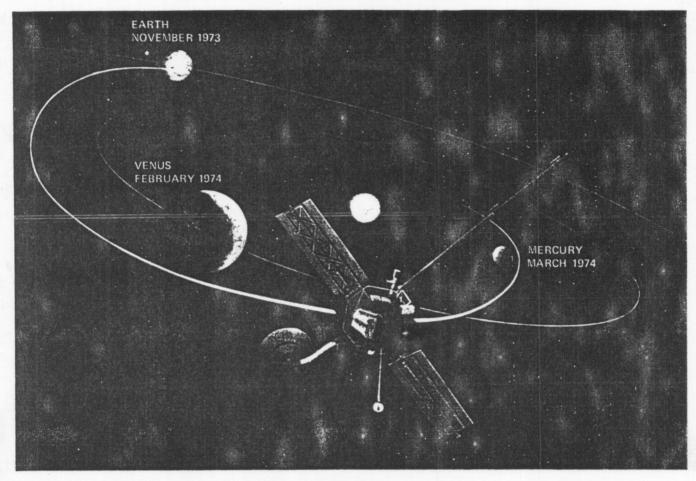


Fig. 2-3. Times of launch and arrival at the planets were clearly defined.

to be controlled within 400 km (250 mi), otherwise no Mercury encounter could take place.

In overview (Fig. 2-3), the mission would start with liftoff from Kennedy Space Center, the Centaur engine cutting off shortly thereafter, placing the spacecraft in a parking orbit which would carry it partway around the Earth for 25 min.

The Centaur then would burn a second time, thrusting Mariner in a direction opposite to the Earth's orbital motion. This direction was required to provide the spacecraft with a lower velocity relative to the Sun than Earth's orbital velocity, allowing the spacecraft to be drawn inwards in the Sun's gravitational field to achieve its encounter with Venus.

A few months later the Mariner spacecraft would approach Venus from the planet's dark

side, passing over the sunlit side and, slowed by Venus, falling closer to the Sun to rendezvous with Mercury.

The Mariner 10 Spacecraft

More than a decade of evolution of Mariner technology was continued by the Mariner Venus/Mercury 1973 spacecraft, which was the sixth of a series that began with Mariner Venus in 1962 and included Mariner Mars 1964, Mariner Venus 1967, Mariner Mars 1969 and Mariner Mars Orbiter 1971 (Figure 2-4). In common with

Fig. 2-4. Mariner Venus/Mercury continued a line of successful Mariner spacecraft that had previously explored Venus and Mars.

NASA Distinguished Service Medal

Jet Propulsion Laboratory Walker E. Giberson

NASA Outstanding Leadership Medal

Jet Propulsion Laboratory
John R. Casani

NASA Distinguished Public Service Medals

The Boeing Aerospace Company Edwin G. Czarnecki

California Institute of Technology Bruce C. Murray

NASA Exceptional Scientific Achievement Medals

Massachusetts Institute of Technology

Herbert S. Bridge

Jet Propulsion Laboratory

Victor C. Clarke, Jr. James A. Dunne

University of Chicago

Enrico Fermi Institute

John A. Simpson

NASA Exceptional Service Medals

Jet Propulsion Laboratory

Lida M. Bates
Lyle V. Burden
Elliott Cutting
G. Edward Danielson, Jr.
Esker K. Davis
Richard L. Foster
Daryal T. Gant
Harold J. Gordon
Adrian J. Hooke
William R. Howard (Deceased)
Edward H. Kopf, Jr.
William I. Purdy, Jr.
Norri Sirri
F. Louis Sola
Anthony J. Spear
Gael F. Squibb

Francis M. Sturms, Jr. Fred Vescelus Peter B. Whitehead James N. Wilson

NASA Public Service Awards

The Boeing Aerospace Company

Richard A. Axell William E. Bramel Haim Kennet Bernard M. Lehv George B. Rickey

Planning Research Corporation

Kunihei Kawasaki

NASA Group Achievement Awards

Flight Project Representative Team (Award acepted by Allen P. Bowman)

Jet Propulsion Laboratory

Allen P. Bowman
Frank A. Goodwin
Harold J. Gordon
Eugene A. Laumann
Floyd A. Paul
William I. Purdy, Jr.
Michael J. Sander
F. Louis Sola
Anthony J. Spear
Eric E. Suggs, Jr.
Herbert G. Trostle

Flight Data Subsystem Development Team (Award accepted by Alan Messner)

Jet Propulsion Laboratory

Frank F. Baran James E. Blue Gordon A. Crawford Raymond P. Del Negro Ralph De Santis Harvey L. Jeane Ronald R. Manaker Carl F. Mazzocco Alan Messner Martin N. Orton Richard Piety Thomas Shain John H. Shepherd L. Richard Springer James Stahnke Fred A. Tomey Ralph E. West Peter B. Whitehead Jervis L. Wolfe Larry W. Wright

Motorola, Inc.

Philip Girard William Hatcher David Skoumal Harry Wagner

Ground Data System Integration Team (Award accepted by Robert G. Polansky)

Jet Propulsion Laboratory

James W. Capps
John M. Carnakis
Edward L. Dunbar, Jr.
Richard L. Foster
C. Wayne Harris
Jay A. Holladay
David B. Lame

H. Richard Malm Robert G. Polansky Thomas M. Taylor

Philco-Ford Corp.

Nick Fanelli

Mission Control and Computing Center (Award accepted by Michael J. Sander)

The Boeing Aerospace Company

D. M. Sargent

Jet Propulsion Laboratory

Wailen E. Bennet Richard L. Foster Ralph P. Hurt David B. Lame Gary D. Metts Rolf H. Niemeyer George M. Reed Michael J. Sander William H. Stapper Michael R. Warner

Philco-Ford Corp.

Bruce H. Walton Eugene G. Herrington Edward R. Kelly Allan L. Sacks

Planning Research Corp.

Kunihei Kawasaki

Mission Sequence Working Group (Award accepted by Rodney Zieger)

Jet Propulsion Laboratory

G. Edward Danielson, Jr. Adrian J. Hooke
Kenneth P. Klaasen
Lawrence Koga
Sergio X. Madrigal
Donna L. Shirley
Ronald C. Spriestersbach
Gael F. Squibb
Kennis Stowers
Robert I. Toombs
William A. Webb
Clayne M. Yeates
Steven J. Zawacki

Philco-Ford Corp.

Roy E. Bates Patricia M. Kirkish

The Boeing Aerospace Company

Michael R. Cramer George M. Elliott Merlyn J. Flakus Bernard R. Migas Dudley A. Vines Rod Zieger

Navigation Development and Operations Team (Award accepted by Jeremy B. Jones)

Jet Propulsion Laboratory

Marvin H. Bantell, Jr. Raymond A. Becker Carl S. Christensen Leonard Dicken Vincent L. Evanchuk Harold J. Gordon Jeremy B. Jones Roger E. Koch C. Jeffrey Leising Edward L. McKinley Richard V. Morris V. John Ondrasik Gerald E. Pease Stephen J. Reinbold Andrey Sergeyevsky Gary L. Sievers

The Boeing Aerospace Company

Jarrett H. Thomas

Roll Axis Anomaly/Solar Sailing Team (Award accepted by Walter F. Havens)

Jet Propulsion Laboratory

Teofile A. Almaguer, Jr. Alan T. Campbell A. Earl Cherniack Vincent L. Evanchuk Patrick J. Hand Walter F. Havens John M. Kent Edward H. Kopf, Jr. William I. Purdy, Jr. Jack W. Rhoads Lawrence L. Schumacher Robert L. Shrake Stephen Z. Szirmay Jaiyun M. Yuh

The Boeing Aerospace Company

John R. Barton
Julius D. Budos
Tord Dannevig
C. Thomas Golden
Jerome H. Hardman
Robert P. Lang
David H. Merchant
Bernard R. Migas
Paul H. Stern

Television Subsystem Development Team (Award accepted by David Norris)

Jet Propulsion Laboratory

Lloyd A. Adams
G. Edward Danielson, Jr.
Harry T. Enmark
Mark Herring
Kenneth C. La Bau
Clayton C. La Baw
Leonard Larks
David Norris
Gerald M. Smith
Daniel L. Smyth
Fred Vescelus
Joachim G. Voeltz

Electro-Optical Systems

William Cunningham Nicolaas M. Emmer

Work Unit Management Team (Award accepted by Teofile A. Almaguer, Jr.)

Jet Propulsion Laboratory

Jerome E. Abraham Teofile A. Almaguer, Jr. Philip M. Barnett Raymond A. Becker C. Glen Bullock Frederick R. Chamberlain G. Wade Earle Vincent L. Evanchuk Arthur O. Franzon Robert E. Freeland H. Kent Frewing Edward G. Gregory Donald E. Hayes Donald D. Howard Herman L. Johnson L. Earl Jones Edward E. Kellum Dan B. Kubly Donald D. Lord Floyd A. Paul James A. Roberts Charles H. Savage L. Tom Shaw Charles A. Smith Stephen G. Sollock Alvin B. Sorkin James H. Stevens William H. Tyler Ronald J. Zenone

System Contract Procurement Team (Award accepted by John Heie)

Jet Propulsion Laboratory

Daryal T. Gant John Heie Eugene C. Reiz Donald E. Weckerle

Jet Propulsion Laboratory (Award accepted by William H. Pickering)

> Leticia Eckerle Bruce M. Hayes John C. Hewitt Sharon D. Jones Harold J. Wheelock

Mariner 10 Headquarters Staff Support Group (Award accepted by Stephen E. Dwornik)

Maurice E. Binkley Stephen E. Dwornik Nicholas W. Panagakos Robert F. Schmidt Guenter K. Strobel

Spacecraft Flight Operations and Mission Control Teams (Award accepted by Merlyn J. Flakus)

Jet Propulsion Laboratory

Jerome E. Abraham Teofile A. Almaguer, Jr. Rebecca L. Arenas Ronald S. Banes Dallas F. Beauchamp Raymond A. Becker Albert G. Brejcha Phillip E. Brisendine C. Glen Bullock Ralph De Santis Larry N. Dumas James A. Dunne John E. Earnest, Jr. Robert E. Edelson Vincent L. Evanchuk Robert A. Exler H. Kent Frewing Walter F. Havens Mark Herring Adrian J. Hooke Harvey H. Horiuchi Oscar L. Irvin William N. Jensen John M. Kent Edward H. Kopf, Jr. Clayton C. La Baw Paul Lecoq C. Jeffrey Leising Donald D. Lord Dan S. MacGregor Sergio X. Madrigal John C. McKinney Alan Messner Hiroshi Ohtakay Richard B. Postal

William I. Purdy, Jr. Jack W. Rhoads Eddie Royal Lawrence L. Schumacher Robert A. Shepard Charles A. Smith Richard L. Smith Daniel L. Smyth F. Louis Sola Anthony Joseph Spear Ronald C. Spriestersbach Gael F. Squibb Garvin T. Starks Kennis Stowers Eric E. Suggs, Jr. David H. Swenson Fred A. Tomey William H. Tyler Peter B. Whitehead Vincent A. Wirth, Jr. Regina F. Wong Clayne M. Yeates Jaiyun M. Yuh

The Boeing Aerospace Company

Ross E. Barta John R. Barton John H. Bruns Julius D. Budos Theodore C. Clarke Richard T. Cowley Emery J. Durand Michael D. Ebben Merlyn J. Flakus Malcolm D. Gray Jerome M. Hardman Lawrence A. Hughes William F. Just James Leisenring Robert K. MacGregor Boyd D. Madsen F. Alfred Matzke Bernard R. Migas Ken Nakagawa Harold L. Nordwall Donald M. Sargent James F. Schmidling Larry D. Shirk Charles H. Terwilliger Jarrett H. Thomas James R. Williams Ronald C. Zentner Victor S. ZumBrunnen

Philco-Ford Corp.

Conni J. Berry

Electro-Optical Systems

William Cunningham

Boeing Aerospace Management Team (Award accepted by O. C. Boileau, President, The Boeing Aerospace Company)

Data Records Group (Award accepted by John R. Tupman)

Alpha Services

Edward J. Philips

Jet Propulsion Laboratory

Roger W. Burt Richard L. Foster Raul D. Rey Concomly A. Seafeldt John R. Tupman

Philco-Ford Corp.

Ray Caswell
Dale Christiansen
Earl T. Lobdell
Michael A. Orr
Allan L. Sacks
Donna Stapper

Planning Research Corp.

James P. Dunphy Kunihei Kawasaki

The Boeing Aerospace Company Roger A. Vail

V.I.P. Engineering Co.
Harold Hsu

Science Instrument Development Team (Award accepted by David H. Swenson)

Goddard Space Flight Center Kenneth Behannon

Jet Propulsion Laboratory

David H. Swenson Clayne M. Yeates

Kitt Peak National Observatory Samuel C. Clapp

Massachusetts Institute of Technology Robert Butler

Santa Barbara Research Center Jack Engel

The Boeing Aerospace Company

John H. Bruns Theodore C. Clarke F. Alfred Matzke Ken Nakagawa University of Chicago

James E. Lamport

Television Science Team (Award accepted by Bruce C. Murray)

Ames Research Center

Donald E. Gault

California Institute of Technology

James L. Anderson Bruce C. Murray

Hampshire College

Brian T. O'Leary

Jet Propulsion Laboratory

Wailen E. Bennett
Virgil B. Combs
G. Edward Danielson, Jr.
Ralph A. Johansen
Kenneth P. Klaasen
David Lame
Jean J. Lorre
Donald J. Lynn
John R. Schoeni
James M. Soha
Robert I. Toombs

Kitt Peak National Observatory

Michael J. S. Belton

Philco-Ford Corp.

David L. Atwood Michael Morrill Norma J. Stetzel

Planning Research Corp.

Joanne Currie

The Rand Corporation

Merton E. Davies

University of Arizona

Gerard P. Kuiper (deceased) Robert Strom

University of London Observatory

John Guest

University of Pittsburgh

Bruce W. Hapke

University of Wisconsin

Robert Krauss Verner E. Suomi

U.S. Geological Survey

Newell J. Trask

Spacecraft System Design Team (Award accepted by James M. Ellis)

The Boeing Aerospace Company

William E. Bramel
Dwayne E. Broderson
Tord Dannevig
Gordon N. Davison
David R. Douglass
James M. Ellis
Merlyn J. Flakus
C. Thomas Golden
Ivan W. Hudgins
Bernard M. Lehv
Charles W. Luke
George B. Rickey
Edwin E. Spear
Douglas B. Stoddard

Charles H. Terwilliger

Temperature Control Design Team (Award accepted by Raymond A. Becker)

Jet Propulsion Laboratory

Raymond A. Becker

The Boeing Aerospace Company

Robert K. MacGregor Harold L. Nordwall

Boeing Cognizant Work Unit Engineers (Award accepted by Paul H. Stern)

The Boeing Aerospace Company

John E. Anderson
Ole A. Bakken
George C. Bentley
Freddie G. Boyd
Steve S. Campbell
Leonard Cancler
Edward B. DeGroot
David A. Dougherty
David R. Douglass

James M. Ellis Herschel F. Eppenstein Robert L. Farmer Donald C. Flint C. Thomas Golden

James P. Grady Jack A. Grimmett John W. Griswold

Jack W. Hakala Roy E. Juberg

Peter V. Jude Walter M. Keenan Earl D. Kuhl

Morton Kushner

James A. Lackey Robert G. Lane Bernard M. Lehv

Patrick S. Lettenmaier Gordon P. Lowe Donald K. MacWhirter

Earl L. McCabe
Herbert M. McDaniel
D. Paul Meyer

Donald A. Miller Virgil L. Minter Warren I. Mitchell

Calvin P. Morgan Harold L. Nordwall Morton A. Palmer John L. Pertesis

Lawrence C. Phelps Francis B. Robins Perry H. Scarlatos

Richard S. Seymour Robert R. Shamp Larry D. Shirk

Alan T. Simmons Julius Skolnick John R. Steding

Paul H. Stern Paul L. Szyperski

George Trusk Richard D. White Patrick F. Wilson