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Interplanetary Trajectories in the Restricted
Three-Body Problem

Lawrexce M. Perko*
Lockheed M issiles and Space Company, Palo Allo, Calif.

The purpose of this paper is to present an approximate analytic solution to the restricted
three-body problem valid for those initial conditions typical of interplanetary trajectories.
The planar motion of a particle of negligible mass acted on by the gravitational attractions
of two point masses m; and m, as the particle moves in the plane of motion of m; and m, to a
small neighborhood of m, is studied in the framework of the restricted three-body problem
for g = m;/m; much less than one. A boundary-layer type of analysis is applied in order to
obtain an approximate analytic solution to this problem. This type of analysis was first
applied to this problem by P. A. Lagerstrom and J. Kevorkian. They first considered the
two fixed centers problem and then the restricted three-body problem for a special class of
initial conditions typical of certain Earth to moon trajectories, namely, those for which the
initial angular momentum of the particle with respect to my is 0(x'/?). This paper treats the
problem using different independent variables in order to obtain a solution valid for a class of
initial conditions typical of interplanetary trajectories; that is, those trajectories for which
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the initial angular momentum of the particle with respect to my is 0(1).

_ Nomeneclature

= universal gravitational constant
= mass of the largest body
mass of the secondary body
= mass of the particle
= my/m, = mass ratio
= vector from m, L0 Ms
= vector from m, to m,
Ia = vector from m, to ma
= r = magnitude of r
3 = angle between r; and r
9 = central angle of ma in my-centered nonrotating coordi-
nates
v = angle between r, and
= time = central angle of m; in my-centered coordinates
fo = initial time
173 = 1,-‘.'
fy = inivual angular momentum of m. relative to my
2 = initial eccentricity of the instantaneous ellipse
ity = 1nitial semimajor axis of the instantaneous ellipze
wy = initial argument of pericenter of the instantaneous
ellipse
zero-order angle of arrival
s speed at infinity on the m,-centered hyperbuola
angular momentum of the hvperbola
w argument of pericenter of the hyperbola
e, eccentricity of the hyvperbola
He = central angle of ms in m;-centered coordinates
A = distance to the asvmptote of the m;-centered hyperbola
t, = time of pericenter passage on the m-centered hyperbola
(5, m) = my-cenlered nonrolating coordinates
3 = denvative of quantity with respect to time
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N this analysis it will be assumed that m, is in a circular
orbit about mg, although this is not necessarv for the
success of the method. The equations of motion of the
particle with respect to mg are then given by
P = —(1/r%) — plryr® + 1] (1)
where

Is =TI — I
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and where the coordinates have been normalized by dividing
distances by the constant my to m, distance d and by
dividing time by the constant (d%/Gmo)'*. As was men-
tioned in the abstract, it is assumed that the mass ratio
@ = my/my is much less than one. The foregoing equations
have the form of a singular perturbation problem. The
perturbation term has a singularity when r.(tf) = 0. The
problem will be treated as two ordinary perturbation prob-
lems: 1) when the particle is outside a small neighborhood
of my, 1. e., when r:(f) = 0(u"?); and 2) when the particle
is inside a small neighborhood of m,, i. e., when ro(f) < 0(u!/?).
The asymptotic expansions of the two perturbation solutions
thus obtained are then matched in the boundary layer common
to these two regions, i. e., when ra(t) = 0(u¥?).  The pertur-
bation solution for the particle outside a small neighborhood of
m, is developed in a m,~centered nonrotating coordinate sys-
tem taking the true anomoly 4 as the independent variable
and effecting the matching in an m,-centered uonrotating coor-
dinate svstem with one axis parallel to the hyvperbolic excess
velocity. The analysis, therefore, differs considerably from
the work of Lagerstrom and Kevorkian =% in which the per-
turbation solution and matching can be carried out in a sin-
gle rotating coordinate system using the distance along the m,
m, line of centers as the independent variable. The basic ideas
and results are, however, the same.

The perturbation solution for the particle outside a small
neighborhood of m, and its asymptotic expansion will first Le
derived. The foregoing equations of motion (1) can be
written in component form noting that the vecwors

I, = e, cosg — epsing
I.=r7168 —1I

where 3 = # — tis the angle between r; and r, and 6 is meas-
ured in a mg-centered nonrotating reference frame (Fig. 1).
The differential equations become

5 = _:_ﬁ #(cosﬁg;ce@)

a3

1d o _ (. .  sid
=5 (r24) —,u(smﬁ rg")

The second equation implies that the angular momentum is
a constant Ay, the imtial value, plus a perturbation term

r = hy + u J:: r (sinﬁ - 3_1:1713) di (3)



Fig. 1 Coordinate systems.

This equation can be used to write (2) in terms of 6 as the
independent variable. The dependent variables will be

taken as t and v = 1/r. The foregoing equations become

d*u
dap*

r—cosﬂ), i

."31 '

dr { . singd 2 g
r@(ams—?)—}}f%r’x : (4)
]
(sims = ‘“rna) dﬂ} + 0(uy)

di re Sl L sing3 .
i Y sind — )
5 = ik Jor (mﬁ = ) d6 + 0(u?)

+u = i - h:)—{r'* (cos_ﬁi +

where Eq. (3) has been used to write the integrals with
respect to ¢ as integrals with respect to 8 to 0(u).

The solution to these equations can be written as an ex-
pansion in the small parameter u:

ulf) = ug(f) + ww(0) + pua(f) + . ..
HE) = () + ph() + u(0) + ...

The well-known zero-order solution to these equations for
ey < 11s (Ref. 1, n.00)
1 ho?
u(8) 1 + e cos(d — wy)
: (1 — eg*)¥2sin(f — wy)
‘ s1n 7t e
bif) = & + a” l:m ( T T ¢ cos(8 — ) )

eo(l — e}V sin(f — wy) ]‘
1 + € cos(f — wy) o

rolf) =

Similar equations hold for g = 1 (Ref. 4, p. 91). Define
So(0) = 0 — t(f)
ra(6) = [1 — 2ry(8) cosBe(8) + re*(6) ]2

Then substituting the expansions for u(#) and {(8) into the
differential equations (4) and equating the coefficients of like
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powers of p determines the linear differential equations for '
uy(6) and £,(8), 1. e.,

e : ro(8) — cosBa(0)
ag T h‘;“el:""(")(cosﬂ«(a) + __m_) +
onosnnio - 5 - |
= - sini3, | E
he? ki "ﬂ’(e)(sm_ﬂo(e) - 3(;))) dg]i @
dtl _ ?'03(6} ] " . B Slﬂﬁo(ﬂ} )
an f* " (ﬂj(mﬁ"(&) r3(6) )da
i‘:fo (B)u(0)

The initial conditions are chosen so that the particle reaches :
a small neighborhood of m;. In fact, thev are specified such 2
that the unperturbed trajectory intersects m, at 8 = 6,, i. e., e
ro(f,) = 1 and £(6,) = 6,. Small variations in these 1mtlaI %r
conditions can then be studied by standard error propaga- -u%:
tion techniques. s
In order to determine the singular behavior of the first- 7=
order solution, 1. e., of u;(8) and t,(8), as § approaches 6,, the
singular terms appearing in (3) will be expanded about 8 = 6,. -

~ This is accomplished using the following expansions that are =

used throughout the paper:

7e(f) =1 —a (I "")(o;— 8) + (at—b) X

o
(%“) 8 — 6) + 0(6, — 0)*

to(8)

1
b~ 5 (6= ) + | ,

}% (1 — ho) (B — 8)* + 0(8, — )
0

_ufli=ily _ _a - :
Bolf) = ( n )(6‘. B}[l }h(ﬁl GJ:I + ;

0(6, — 6)]

where

y = | fsind — o) jl( ho ) _ eosin(f — w)
~ L1+ e cos(B — w) J\1 — ho ho(1 — ho)
1
2

e c03(6 — wy) ho  \_
1 + egcos(, — an) J\1 — ho/

!
e cos(b — wo) 2 1

h = —

2(1 — ho)?
since
it iR
b= nl) = T ol — ) | qu
The other constants appearing in these equations are defined -:--.-,-i

in the Nomenclature. Using these expansions, the hehavior
of the singular terms in (5) can be described
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where the constants.
Kow a +h::=()lm_[ 1%_) hol? :
Ky =52 (2 = 3k







