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Summary

Some interesting geometrical and analytical properties of
free fall trajectories are developed and subsequently exploited
to provide a technique for determining interplanetary transfer
orbits. After a general discussion, the determination of pro-
pulsion-free round trips to the planet Mars is considered. As a
preliminary step, the reconnaissance problem is analyzed for a
simple two-dimensional model of the solar system, assuming
circular planetary orbits.

Finally, a method is described for determining round-trip, non-
stop recoonaissance trajectories in a three-dimensional model
with elliptical planetary orbits. The results from the simplified
approach are compared with those obtained from the true model.
I: is found that several important features of the trajectory prob-
lem are basically three-dimensional in nature and that the simpli-
fied medel is inadequate for their description.

(1) Geometrical and Analytical Properties
of Trajectories

(1.1) General Conic Trajectories.

WHE.\’ A BODY is in motion under tbe action of an
attractive central force that varies as the inverse
square of the distance, the path described will be a
conic whose focus is at the center of attraction. The
particular conic (ellipse, hyperbola, or parabola) is
determined solely by the velocity and the distance
from the center of force. In many problems of inter-
planetary flight it is frequently convenient to analyze
the flight of a space ship by considering its motion to be
influenced by only one celestial body during any one
period of time. Therefore, we shall begin our study of
interplanetary trajectories by considering the purely
geometrical problem of determining the various conic
paths that connect two fixed points and that have a
focus coinciding with a fixed center of force.
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There are many equivalent definitions of conics;
however, we shall find the following ones most con-
venient for our purposes: :

Ellipse: The locus of points the sum of whose dis-
tances from two fixed points (foci) is constant.
Hyperbola: The locus of points the difference of
whose distances from two fixed points (foci) is con-
stant.

Parabola: The locus of points equally distant from
a fixed point (focus) and a fixed straight line (direc-
trix).

The familiar elements of these conics are shown in
Figs. 1-1, 1-2, and 1-3 and will serve to orient the reader
during the remainder of the discussion.

Consider now two fixed points P and Q and a center
of force fixed at a point F. For parabolic paths these
three points are sufficient to determine the two parabo-
las connecting P and Q with a focus at F. However,
for elliptic and hyperbolic paths, further specifications
are required to determine a unique trajectory. Let us
examine first the characteristics of the family of elliptical
paths.

(1.2) Elliptical Trajectories

Consider the three points F, P, and Q in Fig. 1-4 and
let it be required to find an ellipse with a focus at F
that connects the two points P and Q. If the location
of the second focus F* (sometimes called the vacant
focus) is fixed, the problem is solved and the path is
determined. Since the point F* cannot be placed
arbitrarily, it will be of interest to find the locus ot the
foci of all ellipses that satisfy the conditions of the
problem.

To this end, let us designate the line segments in
Fig. 14 as follows:

FP =1, FQ=r, PQ=c

(1.2.1)
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Fic. 1-1 (Top). Ellipse. Fi1G. 1-2 (Center). Hyperbola.
F1c. 1-3 (Bottom). Parabola.

(In our discussion we shall assume r; > r;; obvious
changes in the results can be made if the reverse in-
equality holds. The case for which r, = r. is quite
special and, indeed, almost trivial.) Since P and Q
must both lie on the ellipse, the point F* must be se-
lected such that

PF* + PF = QF* + QF = 2
or, equivalently,

PF* =2 — 1, QF* =2 —r

Thus, for an ellipse of major axis 2a, the point F* is de-
termined as the point of intersection of two circles
centered at P and Q with respective radii 22 — r, and
2¢ — r.. A number of such circles have been con-
structed in Fig. 14 for different values of the major
axis 2a.

We may make at once several interesting obser-
vations:

(a) If the selected value of 2a is too small, the circles
will not intersect. Thus, there is a smallest value,
2a,, below which no elliptical path is possible. When
a = a,, the two circles are tangent and the point of
tangency Fn.* lies on the line PQ. Thus, a. may be
determined from

(20:!! - r2) -l': (2&,‘ - ?1) -
to give a value -
=(rn+r+c)/2 {L2:2)

which is just one-half of the perimeter of the triangle
FPQ. For later convenience, we introduce t-e nota-
tion

(b) When @ > a., the pair of circles intersect in two
points F* and F*. Thus, there are, in general, two :
different elliptical paths connecting P and Q having !
the same length major axis but with vacant foci equi- -
distant from and falling on opposite sides of the line
PQ. For any value of 2a, the focus F* is a greater dis- |
tance from F than the corresponding conjugate focus
F*. Therefore, the ellipse with focus at F* has a larger
eccentricity and a smaller latus rectum than the ellipse
with the same length major axis and focus at F*,

As a point of interest, the values of @, and a» used in
the construction of Fig. 14 are ;

A

2a, = 23..‘ "‘I" YL,/Q, = 20’-“ + 41
(¢) Each vacant focus is so located that the distances
from P and Q have a constant difference r» — ry.

Thus, the locus of these foci is a hyperbola; P and Q are
the foci of the hyperbola; 7. — r, is the length of its
major axis; and ¢/(r» — ) is the eccentricity. The
asymptotes of the hyperbola have slopes given by

o M;,ﬂr

slo ob

Slopes of the asymptotes =
[° (e =) V(s —n)(s —n) =
=[2V nr/(r: — )] sin (8/2)

o T

(1.2.4) |

;
The second form of Eq. (1.2.4) shows explicitly how the |
hyperbolic locus of F* varies with the angle between 3
FPand FQ. . i
Minimum-Energy Ellipse : ¥

The point F.* defines the so-called ‘‘minimum- 3§
energy’’ elliptical path from P to Q. The kinetic
energy of a body, moving in free fall along an elliptical 3
arc, is proportional to [(1'r) — (1/2a)], where r is the ¥
distance from the center of force. Thus, the kinetic
energy at any point is a minimum when the major axis ;
of the path has the minimum value of 2a,. We may 3
determine the semi-latus rectum /, and the eccentricity 3
én of the minimum energy path in the following manner:33

Since €77, FFa* = 2en
we have, from Fig. 14,
(2€mam)? = [(s — r) sin £ PQF]* +

[re = (s — rs) cos £ PQF]’ ;
Using the trigonometric identity
cos £ PQF = [2s(s — n)/rec] — 1

we have ,
$*—4s(s — ) (s = m)/c

But, for an ellipse, in general,
(2ea)? = da(a — 1)

(2 5-!!3-!) =
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so that (2€m8m)* = s* — 25,

Hence,

In = 2(s = n)(s — ra)/c =
(rir2/€)(1 — cos 8) (1.2.5)

The eccentricity e, may then be found from
I = (s/2)(Q — &)

Osculating Ellipse

The point Q coincides with the point of aphelion for
the ellipse whose focus F(* is determined as the inter-
section of the hyperbolic locus and the line QF. All
elliptical patbs from P to Q with fodi to the right of the
line QF reach aphelion before arriving at Q, while those
with foci on the left reach aphelion after passing
through Q. Since the path is tangent at Q to a circle
of radius 7, and centered at F, we shall use the term
“osculating ellipse’”’ when referring to this trajectory.
We may again employ simple geometrical arguments
to determine the major axis 2a,, eccentricity &, and
latus rectum k.

Referring to Fig. 1-4, we have, from the definition
of an ellipse,

QF* + QF = PF + PF,* = 2a,
However, since Q, F, : Fy* are colinear, then
QF* = rn — 2ey = 20y — 1
Hence, PF* = 2r, — 209 — 1y

Considering now the triangle FPF,*, we use a funda-
mental trigonometric identity to obtain

ralrs — (2ra — 2eay — )] _ 1+ cosé

r1(2e0ay) 2
which may be solved for 2eaq, to yield
- 200 = 2ra(r2 — r) '[2rs — (1 4+ cos §)]
But 20y, = 2r. — 260y
so that

a0 = 12/{1 + [(ra — 1) (r2 — nicos8)]} (1.2.6)

The corresponding value of the semi-latus rectum is
readily found to be

L = [rra/(r2 — rycos )] (1 — cos 8) (1.2.7)

Finally, by comparing Eqgs. (1.2.5) and (1.2.7), we note
the following interesting relation:

I, = Lhcos £ PQF
Symmetrical Ellipse

(1.2.8)

To complete our discussion of elliptical trajectories,
let us consider the ellipse whose focus F,* is determined
as the intersection of the hyperbolic locus and the line
through F that is parallel to PQ. This path is of some
interest because of its symmetry—i.e., the point P
bears the same relationship to perihelion as the point
Q does to aphelion. The elements of this ellipse, 2a,,
¢, and [, are readily obtained since the polygon
PQF,*F is an isosceles trapezoid.

We find 20, =1 + 12 (1.2.9)

and

I, = [nra(ny + 12)/c*] (1 — cos 6) =
[(rs + ra)/cllm  (1.2.10)

(1.3) Hyperbolic Trajectories

Consider again the three points F, P, and Q shown
now in Fig. 1-5 and let it be required to find a hyper-
bola with focus at F that connects the two points P
and Q. Again the problem is solved if the location of
the second focus F* is determined. However, since the
point F is an attractive focus, we are interested only
in the branch of the hyperbolic path that is concave
with respect to F.

The points P and Q must both lie on the concave
branch of the hyperbola, so that the point F* must be
selected such that

PF* — PF=QF* —QF = 2a

Thus, for a hyperbola whose major axis is 2a, the point
F* is determined as the point of intersection of two
circles centered at P and (, with respective radii
22 4+ ryand 2a 4 r.. Three such pairs of circles have

Fic. 1-4. Locus of the vacant foci for elliptical trajectories.

“Fic. 1-5. Locus of the vacant foci for hyperbolic trajectories.
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Fic. 1-6.

Parabolic trajectories.

been constructed in Fig. 1-5 for values of ¢ = 0, a,,
and a», where @, and a. where chosen as

23[ = ."1“'2, 23: =n

We make the following interesting observations:

(a) All points of intersection of the circle pairs fall
outside of the circle centered at P axd of radius ;. Onme
may readily verify that, for hyperbolic paths from P
to Q that are convex with respect to the focus F, the
vacant foci F* all lie within this circle.

(b) The pair of circles intersect in two points F*
and F*, so that there are two different hyperbolic paths
connecting P and Q having the same length major axis
and with vacant foci equidistant from and falling on
opposite sides of the line PQ. For any value of 2a, the
hyperbola with focus at F* has a larger eccentricity
and a larger latus rectum than the corresponding
hyperbola with focus at F.*

(c) Each vacant focus is so located that the difference
of its distances from Q and P is r» — r.. Thus, the
locus of these foci is the conjugate branch of the hyper-
bolic locus of the foci for the elliptical paths considered
previously. _

The foci Fy* and F*, corresponding to a zero-length
major axis, are extreme cases in that infinite velocities
gre required to describe the associated paths. The
path with vacant focus at Fy* is the straight line from
P to Q; i.e., the hyperbola for whiche = Oand ¢ = «.
Corresponding to the focus, Fo*, the path is compnsed
of the two straight-line segments from P to F and from
F to Q and is the hyperbola for which ¢ = 0 and ¢ =
sec (6/2).

(1.4) Parabolic Trajectories

There are two parabolic paths with focus at F that
connect the two points P-and Q. To determine the
axes of these parabolas, we shall first locate their direc-
trices. Referring to Fig. 1-6 and recalling the defini-
tion of a parabola, the directrices D\D," and D.D.’
are obtained as the two common tangents of the two
circles centered at P and Q with respective radii 7; and
r.. The axes 4.4," and 4.4.' of the two parabolas are

the normals to the corresponding directrices through
the focus F. The vertices V, and V; are the mid-
points of that portion of the axes included between the
focus F and the directrices. By elementary geometry
one can show that the axes 4,4, and 4.4,’ are parallel
to the asymptotes of the hyperbolic locus of the vacant
toci of the elliptical and hyperbolic paths considered
previously. Thus, Eq. (1.2.4) gives the slopes of these
axes with respect to the line PQ.

Again, it is an elementary exercise in geometry to
determine for each parabola the semi-latus rectum or,
equivalently, the distance from focus to directrix. One
obtains

l: = QFI"'j, = ['}(5 o] f[}[s_" rg} -‘(Cz] X
(Vs/2 + Vs — 027 (1.4.1)
!: = QFL’-_I = [-1'(5 — fl)(.?_— r:) fFC:] X

(V5’2 = V(s = /2] (1.4.2)
(1.5) Larus Rectum and Eccentricity

Although we have found it possible to obtain the
latus rectum and eccentricity of several special conic
paths by employing geometrical arguments, it would be
impractical to use similar techniques for the general
case. Instead, let us tackle the problem of obtaining
an analytic functional relationship between the latus
rectum and major axis of the conic by using the polar-
coordinate equation -

r=1/(1+ ecos ¢) (1.5.1)

where 7 and ¢ are polar coordinates of a point on the
conic whose focus is at the origin. The conic is either
an ellipse or a hyperbola, according to whether the
eccentricity e is less than or greater than ome, respec-
tively. The semi-latus rectum / is related to the eccen-
tricity e and the semi-major axis a by

I =a(l —¢) (ellipse)
l=a(e& —11)

(1.5.2)
(1.5.3)

Since the points P and Q of Fig. 1-7 both lie on the
conic, then, from Eq. (1.3.1), we have

(hyperbola)

Fic. 1-7.

Generual cunic trajectory.

i




ugh
1 id-
the
itry
llel
ant
:red

1ese

r to
or,
One

1.1)

1.2

the
onic
1 be
eral
1ng
itus
lar-

5.1)
the
ther
the
pec-
cen-

it AR S i e
-

ROUND-TRIP PLANETARY RECONNAISSANCE TRAJ'E_CTORIES 9

ecosy = (/) =1, ecos(y+8) = (/) —1

(1.5.4)

Consider the trigonometric identity

cos® (y + 0) — 2 cos (v + 6) cos y cos § +
cos’y —sin*f =0

and substitute from Egs. (1.5.1)—(1.5.3) to obtain

ar*(l — r2)? — 2arira(l — ra) (I — 1) cos b6 +
ar.¥(l — ) — (@ F Dri’r.*sin? 8 = 0

where the selection of upper or lower signs in the last
term is made, respectively, according to whether the
conic is an ellipse or a hyperbola. If we now collect
terms in powers of / (note that the coefficient of [* is
simply ac?) and make further obvious simplifications,
we find

actl* — rira(l — cos @) [2a(ry + ) F
rira(1 + cos 8))l + ar®r?(l — cos 8)* = 0 (1.5.5)

Introducing the symbol s, which is defined by Eq.
(1.2.3), permits the bracketed expression of Eq. (1.3.5)
to be rewritten in the form

2a(ry + r2) F rnre(l + cos ) =2a(2s —¢) F

25(s — ¢) = F25(s — ¢ F 2a) — 2ac (1.5.6)

In the remaining part of the derivation we shall con-
sider separately the ellipse and the hyperbola.

For the elliptical case, it is convenient to introduce
the notation

sin(@2) = V(n+ 7.+ ¢)/4a = Vs'2 (1.57)

sin (38/2) = \/(r, +r—c¢)da = ‘\/(s —¢) 22
Fa on T RS (1.5.8)
so that we may write
s —¢— 2a = —2a cos® (3/2)

s = 2a sin® (a.2)
¢ = 2a [sin® (a/2) — sin® (3.2)]

The right-hand side of Eq. (1.5.6) may then be written
as

Sa® sin® (a2) cos® (3./2) — 4a*[sin? (a/2) —
sigﬂ (8:2)] = 4a*sin® (a/2) cos B8 + 4a*sin* (8/2) =
2a*{sin? [(a + B)/2] + sin® [(a — B)/2]}

Substituting this into Eq. (1.5.3) and further noting
that

rra(l — cos8) = 2(s — rn)(s — ra)
gives

actl* — da*(s — r)(s — r){sin? [(a« + 8)/2] +
sin [(a — 8)/2]} L + da(s — n)is — n)* =0

Finally, multiplying through by ¢?/c and using the
identity

¢ = 2a sin [(a + B).2] sin [(« — 8)/2]
yields

r__________,_..-r'—"“—m_,..—
I = [da(s — n)(s — r)/c?] X

" are obtained:

¢ — da(s — n)(s — r){sin® ((« + )/2] +
sin? [(a — B)/2]} ¢¥ 4+ 16a*(s — n)? (s — r2)* X
sin? [(a + B8)/2] sin? [(«a — B)'2] = 0

from which the two roo

sin? [(@¢ = B)/2] (ellipse) (1.5.9)

For the hyperbolic case, an analogous procedure is
followed after introducing the notation

sinh (a/2) = V(r, + r2 + ¢)/4a = Vsi2a (1.5.10)
sinh (8/2)

‘\/(r1 + 1 — ¢)/4a

I
[

\/(s — ¢)/2a
(1.5.11)
We may then write
s — ¢+ 2a = 2a cosh? (8/2)
s = 2a sinh® («’2)
¢ = 2 [sinh? (a’2) — sinh? (3-2)]
and the right-hand side of Eq. (1.5.6) becomes
2a* {sinh? [(« + B8)/2] + sinh? [(« — B)/2]}
Substituting into Eq. (1.5.3), using the identity
¢ = 2a sinh [(a« 4+ B)/2] sinh [(e — B) 2]

and following the same steps as for the elliptical case, we
obtain

I = [da(s — n)(s — r)/c?] X
sinh? [(a = B)/2] (hyperbola)

Our analytical and geometrical results are consistent
—that is, to each value of @, there correspond two el-
lipses or two hyperbolas that satisfy the requirements
of the problem. Furthermore, in the elliptical case
the conditions for minimum energy, as expressed by
Eq. (1.2.2), imply @ = = in Eq. (1.5.7).

0<B<acsr

(1.5.12)

Also, since

it follows that
sin® [(a + B)/2] 2 sin® [(« — 3).2]

Therefore, if I, and I_ are used to denote the two
roots given by Eq. (1.5.9), in accordance with the
particular choice of sign, we have

L&,

Since the distance L between the foci of an ellipse may
be written as

L =2Va(a -1
it follows that L, <L_

with the subscripts having the obvious interpretation.
Therefore, in Eq. (1.5.9), the upper sign corresponds
to the focus F*, shown 1.r-1 Fig. 14, while the lower sign
corresponds to the focus F*.
Similarly, in the hyperbolic case,

0<B8<L a

.
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so that
sinh? [(a + 8)/2] > sinh? [(« — B)/2]

Again denoting by /, and /_ the two roots given by Eq.
(1.5.12), we have

L > I

as before. On the other hand, the distance L between
the foci of a hyperbola is

L=2Va@+)
so that L,> L_

Therefore, in Eqg. (1.5.12), the upper sign corresponds
to the focus F*, shown in Fig. 1-3, while the lower sign
corresponds to the focus F*.

" We may check our general formula for the latus
rectum with the special results obtained previously by
geometrical arguments. For example, in the mini-
mume-energy case, where g, = 5/2, we have

an = m,, sin(Bn/2) = \/(s —¢)/s

Substitution into Eq. (1.5.9) produces the same ex-
pression for /,, as obtained in Eq. (1.2.5). The two roots
normally obtained are identical, showing that only one
minimume-energy path exists from P to Q.

For the case of the symmetrical ellipse in which, from
Eq. (1.2.9), )

a, = (rl + r2)/2 = (25 e C),/2

we see at once that the corresponding values of e and 8
are such that

a+ B8 =7

Eq. (1.2.10) for /, follows immediately from the general
expression for / if we choose the upper sign in Eq. (1.5.9).

We shall close this discussion by making one final
observation. By using Egs. (1.5.7) and (1.5.8), we
may expand Eq. (1.5.9) as

I = [4(s — n)(s — rp)/c?] X
[ Visi2 V1 — [(s — &) 2al =
V1 = (s/2a) V(s — ¢)/2}?

and determine the limit of [ as a becomes infinite. Re-
ferring to Egs. (1.4.1) and (1.4.2), we see at once that
limf+=l;, ﬁm!._=ft

which shows that the parabolic paths from P to Q are
the limiting forms of elliptical paths with infinite major
axes. - A similar expansion of Eq. (1.5.12) and subse-
quent determination of the limit for increasing a also
shows these same parabolas as the limiting forms of
hyperbolas with infinite major axes.

Finally, one may consider, from an analytic point
of view, the shape of the limiting hyperbolas as a ap-

proaches zero. By calculating the limiting slope of

the asymptotes

lim (6*/a® = lim (//a)
a—0 a—0

the results stated at the end of Section (1.3) may be
jreriﬁed.

(1.6) Time of Flight for a Conic Trajectory

There are many interesting and sometimes surprising 3
properties of conic trajectories. For example, one 2
would scarcely anticipate that the period P of elliptic
motion would depend only upon the major axis of the
ellipse and not at all upon the eccentricity. The pre-
cise relationship is

P =2xVa¥/u £

‘ (16.1) 3
where a is the semi-major axis of the ellipse and pisa -
constant of such a value that u/r? gives the magnitude
of the force at a distance r from the center of force.
The fact that a particle moving in free fall along a
conic trajectory has a velocity magunitude V' at any
point that is a function only of the distance 7 from the
center of force and the major axis is another example
of one of the more interesting properties of conics.
Here, again, nc dependence upon eccentricity is in-
volved and the velocity is determined accordingly by

V2= u[(2/r) — (1/a)] (ellipse) (i.6.2)
V2 = u[(2/r) + (1/a)] (hyperbola) (1.6.3) -§
V? = 2u/r (parabola) (1.6.4)

Perhaps the most remarkable theorem in this connec- -§
tion was the one originally discovered by Lambert, and 3
subsequently proved analytically by Lagrange, having
to do with the time to traverse an elliptic arc under
conditions of free fall. Lambert showed that this time
depends only upon the length of the major axis, the
sum of the distances of the initial and final points of
the arc from the center of force, and the length of the
chord joining these points. (Actually, the theorem is
true for a genmeral conic.) In terms of our notation,
if T is the time to describe the arc from P to Q shown
in Fig. 1-7, then Lambert’s theorem states that

T=T(@r+r7rc0 (1.6.3)

We are again astonished to find that the ellipticity is
not involved.

In this paper we shall not be concerned with a demon-
stration of the truth of Lambert’s result, but will in-
stead exploit an idea suggested by Lagrange to arrive
at the precise analytical form of the functional relation-
ship implied in Eq. (1.6.5). Since we have already seen 3§
that there are two paths from P to Q for each conic T
having the same values of a, ry, 7», and ¢, we must expect
to find two different analytical expressions—one valid g
for each of the two paths.t .

Consider first an elliptical arc from P to Q and, more §

t For an ellipse connecting the points P and Q, there is, of
course, a choice between two paths, according to whether the B
ellipse is traversed in the clockwise or counterclockwise direction. 3
In our calculation of the time of flight T, we shall always assume” bAl
counterclockwise motions from P to Q. The time to traverse the
clockwise path may be obtained by subtracting T from the total 3
period. 2
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specifically, one whose vacant focus F* lies along the
lower branch of the hyperbolic locus shown in Fig. 14.
Since the time T to traverse this arc does not depend
on the eccentricity, we may consider instead the arc of
a very flat ellipse, obtained by letting ¢ approach unity
in such a way that g, r; < 72, and ¢ remain unchanged.
Then, according to Eq. (1.6.5), the time to traverse
the original arc subtended by the chord ¢ and the time
to traverse the corresponding arc of the flattened
ellipse are the same. In this limiting process, as e tends
to unity with a fixed, the foci move out to the extremi-
ties of the ellipse and the entire curve flattens out to
coincide with the major axis in the limit. Various
stages, as the limit is approached, are shown in Fig. 1-8.
The same time is required to traverse each of the three
elliptical arcs shown in the Figure. Although the
straight-line distance from P to Q remains constant,
the distances of P and Q from the attractive focus will
change, but in such a way that PF + QF is invariant.
In the limit, the trajectory is rectilinear, the arc in
question coincides exactly with the chord ¢, and we
may compute the time T by elementary methods. To

_this end, we use Eq. (1.6.2) in the form

V= (dr/dt)* = p[(2/r) = (1/a)]

since now all motion tzkes place along a straight-line
path. Rewriting the preceding equation, we have

dt = (1/Vu)lr dr/V2r — (r*/a))
From Fig. 1-8(c), the end points of the arc P and Q are
so located that
PF=(n+rn—¢/2=5—c¢
QF=(n+rmrn+c/2=:s

Hence,
T = (/Va) _,r_ [rdr/V2r — (r*/a)]

Introducing the auxiliary quantities « and 8, defined
by Egs. (1.5.7) and (1.3.8), and making the following
change in the variable of integration:

r =a(l — cos ¢)

we have, finally,

T = +a¥/u r (1 — cos ¥)dy
-}
which becomes

T =(P2x)[(a — sin a) —
: @ — sia 9)1 (1.66)

after performing the simple quadrature and introducing
the period P defined in Ec (1.6.1).

We now derive a corresponding expression for the
time 7 when the elliptical arc from P to Q has its vacant
focus F* along the upper branch of the hyperbolic locus
in Fig. 1-. In this case, the chord ¢ intersects the line
connecting the two foci Fand F* and this characteristic
mus* be preserved when we pass to the limit of a very
flat ellipse. This situation is illustrated in Fig. 1-9

(ellipse)

PFoCF wryory

(B)

2o
(e}
Fi1c. 1-8. Illustration of the significance of Lambert's theorem.

for various stages as e tends to unity. In the limit,
the time 7 is then identical to the time to traverse the
flattened ellipse from P to F* and from F* back to Q.
Thus, to obtain 7, we simply add to T twice the time
to traverse the distance F*Q; i.e.,

T =T+ 2/Vy) f * rdr V2r — (r*/a)] ©

T + 2V, f (1.~ cos Y)dy

Hence, ~

T=P— (P/27)[(« — sin a). +
(8 — sin B)] (ellipse) -(1.6.7)

For tbe case of the minimum-energy path, Egs. (1.6.6)
and (1.6.7) produce identical results. We have

To = Tm= (Pn/27)[x — (3a — sin Bm)]

where

P = xVs3/2, sin (Bn/2) = V(s — ¢)/s

For the symmetrical ellipse, the time-of-flight expres-
sion is particularly simple. We have

T, = (P/25)a, = 7) = (P, Y 88}

where
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P, =7V (n+ r)¥/2

cos B, = —cosa, = ¢/(r; + r2)

Exactly the same technique may be used to obtain
an analytic expression for the time to traverse a hyper-
belic arc. Consider first a hyperbola connecting the
points P and Q whose vacant focus F* lies along the
upper branch of the hyperbolic locus shown in Fig. 1-3.
To compute the time T to traverse this arc, we again
let ¢ approach unity in such a way that a, r, + r,, and
¢ remain unchanged. -In the limit, when the trajectory
is rectilinear, we may use Eq. (1.6.3) to obtain

T = (1/V5) f_ [rdr/V2r + (r*/a)]

1f we introduce the auxiliary quantities a and 3, defined
by Egs. (1.5.10) and (1.5.11), and make the following
change in the variable of integration:

r = a(cosh ¢ — 1)
we find
I’ = Va®'y[(sinha = a) — (sinh 8 — B)]
(hyperbola) (1.6.8)

The hyperbolic trajectory, whose vacant focus F*
lies along the lower branch of the hyperbolic locus in
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Fig. 1-5, is characterized by the fact that the center
of force F is contained in the area bounded by the chord i
cand the arc that it subtends. This characteristic must
be preserved when passing to the limit. The time T
is then computed as the time to traverse the flattened
hyperbola from P to F and from F to Q; i.e.,

T =T+ @V f bV + )

Hence,

T = Va¥u [(sinh @« — &) + (sinh 8 — B)]
(hyperbola) (1.6.9)

We have seen, in our earlier discussions, that the
parabolic trajectories from P to Q may be considered
as limiting cases of either elliptic or hyperbolic tra-
jectories with infinite major axes. If we compute the
limit of T and T as a becomes infinite, we should obtain
the times T, and T to traverse the parabolic arcs shown
in Fig. 1-6. Indeed, from Egs. (1.6.8) and (1.6.9) we
find

Ty=Um T = (1'3) V2/u [s¥ = (s — ©)¥?]
et (parabola) (1.6.10)
T:=Lm T = (1/3) V2/u [s% + (s — ¢)*?]

e (parabola) (1.6.11)

The same expression for T; in Eq. (1.6.10) may also 3
be obtained using Eq. (1.6.6). On the other hand, the
parabola PV.Q of Fig. 1-6 corresponds, in the limit of
increasing a, to the lower branch of the elliptical arc
with vacant focus F*. Thus, to produce the formula for
T, from the time-of-flight expression for an elliptical
arc, we must use the complementary form of Eq. (1.6.7)
obtained by subtracting T of that equation from the
period P.

(2) Interplanetary Trajectories in a Simple
Model of the Solar System

(2.1) Departure Velocity From a Circular Orbit

Of fundamental importance to the problem of plane- 3
tary reconnaissance is the impulse in velocity needed |
in order that a spaceship may attain a suitable inter- 3
planetary orbit. In the present section we shall ana- g
lyze these velocity requirements using a simplified }
model of the solar system. The basic assumptions §
will be that the planets describe circular orbits around §
the sun and that the planes of these orbits are situated AN
in the plane of the ecliptic. Later, in Section (3), we 1§
shall consider the more complex mode! in which the 3
planetary orbits are elliptical and are inclined with J
respect to the plane of the ecliptic. Furthermore, ¥
we shall not consider here the problem of launching *
a.vehicle from the surface of a planet. We assume, .
instead, that our interplanetary voyage,begins at a -
point that is sufficiently far removed irom the gravita- 3
tional field of the planet that we need consider only the 3
attraction of the sun. The vehicle or spaceship has 3
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an initial velocity that is the same as the orbital ve-
locity of the planet of departure. Our problem will be
to determine the additional velocity required to place
the spaceship in an orbit that intersects the orbit of
the destination planet at a predetermined point in space.

As the first step in our analysis, we will derive ex-
pressions for the polar-coordinate components of the
velocity of a vehicle moving in a conic trajectory.
From the polar equation for a general conic,

r = £/(1_+ € COS @) (2.1.1)
we obtain .
dr/dt = [esin ¢/(1 + ecos ¢)] ride d!)
tfrom which it follows that

(dr’dt)? + [r(de/dt)]* =
[e¢ — 1 4+ 2(/)])(r* 1) [r(do/di)]?

5 —(l/a) (ellipse)
But, € —1= 0 (parabola)
l- l/a (hyperbola)

[ — (u’a) (ellipse)
(dr/dt)? + [r(de/d)]* = (2u/r) + \ 0 (parabgia))
p’a  (hyperbola

Hence,
[r(de/dt)]* = pl'r? (2.1.2)

—(u/a) (ellipse)

(dr.’dt)* = ul(2r — D/r*1 + 0 (parabola)
u’a (hyperbola)
(2.1.3)

In order to keep the energy requirements within rea-
sonable bounds, we shall restrict our discussion of de-
parture velocities for orbital transfer missions to those
required for elliptical trajectories.

Refer to Fig. 2-1 and consider a spaceship in a circular
orbit of radius r; about a center of attraction. The
orbital velocity Vyis

1o = u/n (2.1.4)

When the vehicle is at the point P, a velocity increment
[’z is applied in such a way that the ship will leave its
present orbit at P with velocity Vp and move along an
elliptical trajectory to a point Q at a distance r, from
the center of force. We wish to determine the velocity
increment V3 as a function of the heliocentric angle
through which the ship moves in its voyage from P {o Q.
In particular, we are-interested in the minimum velocity
required for any given mission.

After the velocity increment Vg is applied, the ship
will have a velocity V, whose polar components
(dr’dt)p and (rdé/dt)p are obtained from Egs. (2.1.2)
and (2.1.3). Since Vp is defined by

Ve? = (dr/dt)s* + {[-"(ddifdf)]P = by
we may use Eq. (2.1.4) to obtain

Vi = V23 = (n/a) = _3\/[_:1 (2.1.5)

L1}

Fic. 2-1. Velocity requirements for an orbit to orbit vovage

Let us introduce the dimensionless quantity
AE = V¥ Vy?

which is a measure of the amount of energy needed at
point P to transfer from a circular orbit to an elliptical
orbit for a voyage to Q. Then, from Eq. (1.5.9) and
a simple trigonometric identity, we have
AE = 3 — (r/a) — 4(Var./c) X

sin (6/2) sin [(« = 8)/2] (2.1.6)
Using the definitions of « and 8 given by Egs. (1.5.7)
and (1.5.8), we may write AE in an alternate form as

AE = 3 — (n/a) — (nV2n/c) X
sin{V[1/(s —¢)] — (1.2a) =
V(l/s) —=(1/228)} (2.1.7)
From an examination of the derivative
d(_\E)=r_.l: _r,sine( 1 N
da a* 2¢/2r, \/[1_'(5 - d]- (12a)

V(1%) 1— (1 23))] .

and Eq. (2.1.7), we note the following: -

(a) AE is a double-valued function of ¢ having an
infinite slope at ¢ = a, = s5/2, the smallest value of a
for which an elliptical path from P to Q is possible.

(b) If we denote bv AE, and AE_ the two branches
of the function AE corresponding respectively to the
upper and lower signs in Eq. (2.1.7), we see that

AE, < AE_

with equality obtaining only when ¢ = a.
(c) Asaincreases, AE approaches asymptotically the
values

3= (V2 /c) sin 6((1/Vs = ¢) = (1/V5)]

(d) The slope of the upper brancii AE_is always posi-
tive, while the slope of the lower bronch AE_ is negative
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Fic. 2-2. Earth to Mars departure velocity vs. semi-major axis
of transfer ellipse for 8 = 120°,

for a near @,. The possibility that AE, will have a
minimum for a finite value of a will be considered in the
following section.

A graph of the function 4/AE versus a is provided
in Fig. 2-2. The selected mission is a voyage from
Earth to Mars, so that r; and r; are chosen, respectively,
as the mean distances of the planets from the sun.
The heliocentric angle § traveled was taken as 120° for
purposes of illustration. The ordinate Vzg/Vg shows
directly the additional velocity that must be provided
for the trip as a fraction of the Earth’s orbital velocity.
Since the Earth's velocity is almost 100,000 ft. per
sec., the approximate conversion of Vgz into units of
feet per second is immediate. The abscissa a is shown
as a multiple of the astronomical unit (A.U.).

(2.2) Minimum Departure Velocity From a Circular Orbit

The minimum-energy trajectory discussed in Section
(1) should not be confused with the trajectory requiring
the minimum departure velocity. Indeed, for the
particular case illustrated in Fig. 2-2, the additional
velocity in excess of the orbital velocity needed to travel
the minimum-energy path (¢ = a,) is about double
the minimum departure velocity. As a matter of
fact, the only trajectory that minimizes both the ve-
locity relative to the sun and the velocity relative to
the planet of departure is the so-called Hohmann ellipse.
The Hohmann orbit is distinguished as being co-tan-
gential to the orbit of the planet of departure and to the
orbit of the destination planet.

The energy requirements for the Hohmann path
cannot be obtained directly from Eq. (2.1.7). The
polar angle 6 is equal to = and Eq. (2.1.7) is indeter-
minate for this value. However, because of the sim-
plicity of the geometry, we may evaluate the elements
of the Hohmann ellipse directly and then use Eq.
(2.1.5) to determine the energy requirements AE.

The points of departure and arrival for a Hohmann
trujectory correspond, respectively, to perihelion and
aphelion. Thus, if ag, l4, and g, are, respectively, the
semi-major axis, semi-latus rectum and eccentricity,

we have
au(l — ex) =1, ay(l+ &) =1
so that.T

ay = {("l + r2)/2], g = 2[nr/(n + )]
Finally, from Eq. (2.1.5), we have

AE, = 3 — [2n/(n + 1)) — 2V (n+ ) (2.2.1)

The Hohmann trajectory is not necessarily the ideal
one for interplanetary travel. The precise orientation.
of the departure and destination planets that is re-
quired for the Hohmann path is one obvious disad-
vantage. Another, to be discussed in Section (3), re-
sults from the three-dimensional nature of the solar
system. Its chief interest, therefore, lies in the fact
that it provides, in our simple model, a lower bound for
the energy requirements of any mission—i.e., for a
fixed r; and r, we have

AEg < AE
with equality obtaining only for§ = randa = (r, +
I':)/’Q. :
Obviously, in planning an interplanetary voyage, it
is of advantage to be as flexible as possible with regard
to the time of departure. Therefore, it is of interest E

to examine the energy requirements AE for an arbi- 3

trary configuration of the departure and destination
planets. To this end, let us determine, for a fixed r),
i, and 8, under what conditions AE, as defined in Eq.
(2.1.7). has a minimum value.

It was noted in the previous section that the slope
of the lower branch AE_ of the AE curve is negative
for values of ¢ near ag,. Referring to Eq. (2.1.8),
we see that AE, will have a positive slope if a value of
a exists such that

{1/VI/(s — 9] — (1/20)} +
(/v (1/s) = (1 22)] < 2%cV'2r,/rs sin 6

Clearly, the difference between the lett-hand side of
the preceding inequality and Vs — ¢ + Vs can be
made arbitrarily small by choosing a to be sufficiently

large. Thus, we are led to determine the conditions
under which the inequality

‘\/s —c+ '\/.; < 2::‘\/2?1/1'3 sin 2.2.2

holds. For this purpose, we note that
(Vs = ¢+ Vs)t = 2Vnrcos (672) + r, + 12
< (Vn+ Vi
and (2c V/2r /72 sin 6)* > Sr,

Hence, a sufficient condition for E, to possess a mini-
mum is that -

1 If we compare these results with Eqgs. (1.2.2), (1.2.5), (1.2:6), °
(1.2.7), (1.2.9), and (1.2.10), we see that the Hohmann orbit,
the minimum-energy ellipse, the osculating ellipse, and the sym- .
metrical ellipse are all identical for 8 = ». 5
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Vn+ Vn<2Ver, (2.2.3)

If 2 < r,, the condition of Eq. (2.2.3) holds. There-
fore, an elliptical path, requiring minimum departure
velocity, to an inner planet always exists. Further-
more, one sees that this condition holds also for a trip
from Earth to Mars. On the other hand, for the re-
mainder of the outer planets, the inequality does not
hold and one might expect to find values of § for which
the minimum departure velocity trajectory is parabolic.
As a matter of fact, this rather surprising condition does
prevail for Jupiter and the planets beyond. One
should note, however, that the condition of Eq. (2.2.2
can always be satisfied if sin 6 is made small enough.
Thus, for the outer planets there are sectors near § = 0
and § = 7 for which minimum-departure-velocity
elliptical trajectories exist. However, the farther from
the sun, the smaller these sectors become.

The value of a for which AE. attains its minimum
value (assuming that one exists) is obtained as the root
of the equation

[1/V(1/(s — ©)] — (1/2a)} +
[1/V(1/s) — (1/2a)] = 2cV2r/rsin 8 (2.2.4)

which, after reduction to a normal form, is found to be
of fourth degree in @. For practical purposes, the solu-
tion of Eq. (2.2.4) is obtained more easily as follows.
First, rewrite the equation in the equivalent form

{1/V(1/5) = (1/2a) + [c/s(s — )]} +
[(1/V (1/s) = (1/2a)) = 2¢V/ 27/r2 sin 8
and then introduce a new variable { defined by

tan t = V/(1/s) — (1/2a)/V¢/s(s — o),
0L r< =2 (22.5)

so that Eq. (2.2.4) becomes
cos { + cot { = (2¢/r. sin 6) ‘\/m
or, alternately, _
cos { + cot { = 4(c/r2)¥* sin 6 V'1 + cos 8 (2.2.6)

Eq. (2.2.6) may be solved for { almost by insnection,
using a table of trigonometric functions. With this
value of {, Eq. (2.2.5) may be solved for the correspond-
ing major axis 2a,* Thus, we obtain

90, = rir2(1 + cos 8) 2.2.7)

ri+ r. — c(sec* { + tan?y{)

Finally, the energy change AE.* needed for this tra-
jectory is found by substitution into Eq. (2.1.7). We
have, after some simplification,
AEL* =
gf+ 72— cl(sec§ — tan {)* — 2 sec { tan {]
- r2(1 + cos f)

(finite an*) (2.2.8)

3 -

When AL+ is a monotonically decreasing tunction of
¢, the minimum value occurs for infinite a. The tra-

jectory is parabolic and

AE.* = 3 — (2r/0) sin 6(Vr/(r + 12 — ©) +
Vrn/(n+r+¢)] (infinite a,*) (2.2.9)

For the special case in which § = x, the trajectory is
of the Hohmann type and the minimum value of AE, is
AEy, as obtained from Eq. (2.2.1).

Fig. 2-3 gives plots of (Vez/Ve)n* = VAE.* as
a function of @ for a voyage from Earth to each of the
other planets of the solar system. The curves for the
two most remote planets, Neptune and Pluto, are not
shown because, with the scale used, they would be in-
distinguishable from the curve for Uranus. The sec-
tions of the curves for Jupiter, Saturn, and Uranus,
corresponding to parabolic trajectories as the minimum-
velocity paths, are characterized by broken lines.

(2.3) Nonstop Round-Trip Interplanetary Trajectories

Consider, as a specific mission for an interplanetary
voyage, placing a spaceship in an orbit that passes
within a few thousand miles of another planet and sub-
sequently returns to Earth. The problem of deter-
mining a suitable one-way trajectory may be solved
with relative ease, using the material thus far devel-
oped. The added complication of requiring the ve-
hicle to return to Earth without additional propulsion
(except that needed to correct for navigational inaccu-
racies) would not contribute significantly to the diffi-
culty of obtaining a solution were it not for the de-
flection of the orbit caused by the gravitational field
of the planet as the spaceship passes. Before treating
the effect of perturbations introduced by the destination
planet, let us consider first the nonmstop round-trip
trajectory, with the sun as the only gravitational force
affecting the orbit. )

The simplest possible round-trip trajectory would
be an orbit whose period is a multiple of the Earth's
period. For purposes of illustration and to obtain an
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Fic. 2-4. Earth to Mars departure velocity vs. semi-major axis
of transfer ellipse for various values of the polar angle 6.

appreciation for the magnitude of the velocities in-
volved, let us investigate the possibilities of a spaceship
orbit with a period of one year, that intersects the orbits
of both Earth and Mars. From Egq. (1.6.1) we
see that the semi-major axis ¢ of such an orbit must be
the same as that for the Earth—i.e., one astronomical
unit (A.U.). Since the smallest value that @ can
assume is that for minimum energy, we find, from Eq.
(1.2.2), that the largest possible linear distance be-
tween the point of departure and the first crossing of
the Martian orbit is 1.48 A.U., assuming the radius of
the Martian orbit to be 1.52 A.U. Therefore, the
spaceship must reach the Martian orbit after travers-
ing an angular distance 8 of not more than about 68.3°.
From Eq. (2.1.7), we see that, for a one-year orbit and
for the maximum poésible value of 6, the required de-
parture velocity is approximately 61,000 ft. per sec.
Orbits with a one-year period requiring less velocity do
exist for smaller values of 8; however, from the curves
shown in Fig. 2-3, we see at once that this possibility
ceases for angles less than about 35°. For example, we
reed a velocity of some 53,600 ft. per sec. for § = 58°;
but, for § = 48°, the required velocity for a one-year
orbit is more than 95,400 ft. per sec.

The velocity requirements for an orbit whose period
is 1.5 years are considerably more relaxed. In this
case, the spaceship makes two circuits of the sun while
the Earth makes three. The necessary semi-major
axis is about 1.31 A.U. and calculations similar to
the preceding show that such an orbit is possible for
any value of 4. 1n Fig. 24, the lower portions of the
Earth-to-Mars departure-velocity curves, as a function
of the semi-major axis of the associated ellipse, are
plotted for various values of 8. From these curves, we

see explicitly how the velocity requirements for a
1.5-year orbit depend upon the polar angle §. The
minimum departure velocity for such a trajectory is
approximately 11,200 ft. per sec. and the corresponding &'
value for 8 is about 142°. Fig. 2-5 gives the time of M’
flight from Earth to Mars as a function of the semi-
major axis, plotted for several values of §. From these
curves, the time to reach Mars on the minimum-depar-
ture-velocity trajectory having a 1.5-year period is seen
to be approximately 185 days.

It is, of course, possible to have round-trip orbits
that return to Earth after a non-integral number of
years. However, we shall not pursue this point further
before considering the additional effect of disturbances
induced by the destination planet.

The perturbations experienced by the orbit of a
spaceship, when in the vicinity of a planet, depend upon
the relative velocity with which the vehicle overtakes
or is overtaken by the planet and the distance separat- 3
ing the two at the point of closest approach. In the -
absence of any gravitational fields other than the :
planet’s own, the spaceship would approach the planet
along a hyperbolic path. At a sufficiently great dis-
tance the motion would be essentially along the asymp- 4§
tote and would have a velocity V', relative to the planet
given by

I;nz - ﬁP.-’;an

according to Eq. (1.6.3). Here, we have denoted the
semi-major axis of the hyperbola by a, and the gravi-
tational constant of the planet by up.

Referring to Fig. 2-6, we define § to be the angle be-
tween the asymptote and the conjugate axis of the
hyperbolic path of approach, € to be the eccentricity
of the orbit, D the distance between the vertex and the

a7s,
am
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Fic. 2-5. Ea_rth to Mars time of flight vs. semi-major axis of 4
transfer ellipse for varinus values of the polar angle 4.
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focus, and d the distance between the vertex and the
surface of the planet. The vertex is, of course, the
point of closest approach of the spaceship to the planet,
and we have the relationship

D =ay(en — 1) = (pp/VaD(&n — 1)
Solving for ¢, and noting that e = csc § we obtain

sinéd = 1/[1 + (DVa%up)] (2.3.1)

Therefore, the total effect on the velocity of the space-
ship, after contact with a planet, is simply a rotation
in the plane of motion of the relative component of
velocity by an amount 2. The direction of rotation
of the relative velocity vector will tend to increase or
decrease the absolute velocity according to whether
the spaceship passes behind or ahead of the planet,

- respectively.

The mass ratio of the sun to Mars is 3,093,300.
Therefore, the attraction of the planet does not become
as large as one hundredth of the attraction of the Sun
until the spaceship is within about 800,000 miles of
Mars. By a direct calculation, using Egs. (1.5.9),
(2.1.2), and (2.1.3), we find that a vehicle moving in a
1.5-year orbit that intersects the Martian orbit at
6 = 140° has a velocity component in the direction of
the motion of Mars of about 48,800 m.p.h. and a radial
component away from the sun of approximately 8,770
m.p.h. Since the orbital velocity of Mars is about

54,000 m.p.h., the spaceship is being overtaken by the

planet and the relative velocity between the two
bodies is more than 10,000 miles per hour. Thus, the
vehicle is within the critical 800,000-mile distance ot
the planet for less than 6.5 days. For other round-trip
orbits, the relative velocity is higher, so that the
period of time during which Mars can influence the orbit
will be correspondingly smaller.

Because of the above considerations, it seems rea-
sonable. as a good approximation to the true state of
affairs, to view the effect of Mars on the trajectory as
simply an impulse in velocity applied at the instant
the spaceship crosses the Martian orbit. In computing
the magnitude and direction of sthe velocity impulse, we
shall use Eq. (2.3.1) to obtain the turn angle 23,

with 1", taken as the relative velocity of the spaceship

with respect to Mars, determined at the point of inter-
section of the two orbits.

Considering again the problem of a vehicle moving
in a 1.5-year orbit that intersects the orbit of Mars at
6 = 140°, let us assume that the closest approach to
the surface of the planet is 3,000 miles and that the
ship passes ahead of Mars. Then, following the pro-
cedure outlined, the relative velocity is 10,245 m.p.h.
urd the turn angle 26 is 23°. Therefore, the effect
of the contact is to reduce the absolute velocity from
49,540 to 46,150 m.p.h. Furthermore, the period of
the orbit is reduced from 1.5 to 1.31 years, as deter-
mined from Egs. (1.6.2) and (1.6.1). These are, of
course, sizeable changes, which must be taken into

_account in calculating round-trip interplanetary re-

connaissance trajectories.

APPROACH
VELOCITY OF SHIP

APFROACH PATH

RETURN
OF SPACESHW

YELCQTY OF SHIP

ORBITAL YELCOITY
OF WARS

RELATIVE RETURM
YELOQITY

RELATIVE APPROACH VELOCITY
Fic. 2-6. Motion of spaceship in vicinity of Mars.

(2.4) Reconnaissance Trajectories for the Planet Mars

Using our simple model of the solar system, we shall
now describe a method for computing nonstop tra-
jectories from Earth to a planet and return. For
definiteness, we shall choose the planet Mars as the
target and consider, as allowable spaceship orbits,
elliptical trajectories requiring reasonable departure
velocities. The calculation technique to be described
is not necessarilv the most efficient considering the
simplicity of our model; however, the ideas are readily
adapted to the more difficult three-dimensional problem
that will be treated in Section (3).

Let Vg be the orbital velocity of the Earth and let a
departure velocity magnitude Vgg from the Earth's
orbit be specified. We now choose a value 8, for the
heliocentric angle § between the point of departure on
the Earth's orbit and the point on the Martian orbit at
which we intend to intercept Mars. Then, with AE =
(Vrs/Vg)* and 6 = 6p. Eq. (2.1.7)7 1s solved for the
corresponding value of the semi-major axis ap of the
departure orbit. Obviously, a solution is not always
possible. On the other hand, the equation may have
two roots, each of which corresponds to a satisfactory
solution to the problem of determining a departure
orbit.

The next step in the procedure is to compute the
time T required for the journey from Earth to Mars.
For this purpose, we may use the following convenient
formula, which is universally valid if 8 is not an integral
multiple of x. Thus, if we define IV to be the integral

t Actually, Eq. (2.1.7) holds only for positive values of sin 6.
Therefore, if 8 lies in the third or fourth quadrant, we must use
the symmetry inherent in our simple model—i.e., for any in-
teger k, we observe that # and 2kx — @ require identical departlre
orbits for the same velociry.
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part of 6/2x, we may use Egs. (1.6.6) and (1.6.7),
together with the properties of symmetry, to show that

T = (P/2) {2N + 1 + [sgn (sin 8)/7] X

(£(a —sina — =) — (8 —sinf)]} (24.1)

The positive or negative sign is used, respectively,
according to whether the root ap, was obtained from
the AE, branch of the curve or the AE_ branch. The
function sgn is defined as +1, 0, or —1, according to
whether the argument is, respectively, positive, zero,
or negative.

With the time for the trip from Earth to Mars deter-
mined, the location of Mars at the time of departure
is fixed. Thus, the orientations of the planets, and
hence the time at which the voyage may start, is a con-
sequence of the selected departure orbit.

The relative velocity Vgy of the spaceship with
respect to Mars can be calculated at the point of inter-
section with the Martian orbit from the relationship

Ves? = Vill3 = (n/ap) — 2Vip/r] (2.4.2)

where V) is the orbital velocity of Mars and /p is the
semi-latus rectum of the departure orbit.

Setting aside for the moment the effect of Mars on
the orbit, let us consider next the problem of returning
to Earth. The procedure for determining an appro-
priate return trajectory that intersects the orbit of the
Earth is the same as used in obtaining the departure
trajectory. The magnitude of the relative velocity with
which the ship leaves Mars is the same as that with
which it arrived, regardless of the perturbations in-
duced by the contact. Therefore, we may proceed as
before by selecting the heliocentric angle 8z measured
from the intercept point on the Martian orbit to the
point on the Earth's orbit where we may hope to re-
establish contact with the Earth. Again, we use Eq.
(2.1.7), with AE = (Vga/Vy)? and with 7, and r; now
taken as the radii of the orbits of Mars and Earth,
respectively, to solve for the semi-major axis ag of the
return orbit. If a solution exists, Eq. (2.4.1) may be
used as belore to determine the time for the return trip.

With the time for the complete round trip known,
it is a simple matter to determine the location of the

described, we will either find a return trajectory that
contacts the Earth or conclude that none exists.

Assuming that a return trajectory has been found,
it remains to determine whether the gravitational
field of Mars is sufficient to accomplish the transfer
of the spaceship from the departure orbit to the return
orbit. Using Egs. (2.1.2) and (2.1.3), we may compute
the necessary angle 25 through which the relative
velocity vector must be rotated in order to change
orbits. Then if Vg, is the magnitude of the relative
velocity vector and py is the gravitational constant
of Mars, we may compute the required passing distanrce
D from

D = (un/ VasDlese § — 1) (2.4.3)

If D has a reasonable value, considering the objectives
of the reconnaissance mission, we will have a solution
to the round-trip trajectory problem.

A digital computer program has been prepared that
mechanizes the preceding computational procedure.
By specifying the departure velocity and an angular
increment used to generate values of §,, the computer
will systematically find all of the corresponding round-
trip trajectories. For purposes of illustration, the re-
sults of this program are summarized in Table 1 for a
departure velocity equal to 0.13 times the Earth's
orbital speed and an angular increment of 10°. Cer-
tain arbitrary bounds were placed on the program to
prevent the computer from generating a trajectory re-
quiring more than 3.5 years for the round trip or passing
closer than 500 miles to, or farther than 30,000 miles
from, the surface of Mars. The notation and units
used in Table 1 are listed as follows:

A, = heliocentric angle through which the space-
ship moves from Earth to Mars, deg.

ap = semi-major axis of the departure ellipse,
A.U.

ep = eccentricity of the departure ellipse

Tgy = time for trip from Earth to Mars, days

Vey = relative velocity of vehicle with respect to
Mars at point of intersection with the
Martian orbit, ft. per sec.

Earth at the instant the spaceship returns to the orbit 25 = angle of rotation of the relanve velocity

of the Earth. By systematically varying the choice vector resulting from contact with Mars,

of the angle 6z and repeating the calculations just deg.

TasLE 1

Trip fp. ap. Tear, Vear, 25, d, or, ar. Twz, A, Tror.
No. deg. AU €0 days  ft./sec. deg. miles deg. AU €r dal;i c!e’g'-flr ye?r’:';
1 1§0 1..?:79 0.275 164 20,300 8.5 6,600 528 1.297 0.301 869 At 2.828
2 130 :. £ o ‘ 6.7 9,100 632 1.314 0.296 974 o 3.115
3 E?‘G 3 :: 423 i 17.3 1,800 434 1.228 0.333 612 6 2.848
4. 230 '_‘ £ 11.3 4,300 563 1.274 0.311 742 o 3.203
5 490 b o 756 = 14.3 2,800 283 1.250 0.322 393 — 266 3.147
§ 140 1.359 0.266 175 19,100 6.5 11,100 534 1.301 0.286 B74 48 2.87
. ‘1); . - e a 5.0 15,300 625 1.314 0.281 966 “ 3.124 %
8 ;..00 ) » 493 :: 13. } 4,000 442 1.251 0.308 _634 9 2.838
9 :.0 ' : - ‘ 8.5 7,800 555 1.285 0.293 748 b 3.152
10 500 " rﬁ-l 19.9 1,700 130 1.207 0.332 250 =253 2.7
11 500 o 10. 4 5,800 275 1.271 0.299 397 by 3.152
12 gIO 1.234 0.235 75 17,400 D 11,500 455 1.2 0.27 665 14 2.846
13 510 '- - 751 " 9.8 §100 157 1.962 0.985 291 -243 © 2.853
14 510 “ " o - 5.0 18,600 260 1.295 0.27 396 " 3.140

|
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d = minimum passing distance from the surface
of Mars, miles

6r = beliocentric angle through which the space-
ship moves from Mars to Earth, deg.

ar = semi-major axis of return ellipse, A.U.

eg = eccentricity of return ellipse

Tyz = timeof trip from Mars to Earth, days

A gy = heliocentric angle between Earth and Mars
at instant of departure, in degrees meas-
ured in the counterclockwise direction
from Earth to Mars

Tror = total time for the round trip, years

1n Section (3), certain of these trajectories will be
compared with their three-dimensional counterparts.

(3) Planetary Reconnaissance Trajectories in a
Three-Dimensional Model of the Solar System

(3.1) Coordinate Systems, Angles and Directions

As a preliminary step in the development of a pro-
cedure for determining nonstop, round-trip planetary
reconnaissance trajectories in a true model of the solar
system, it will be convenient to introduce the various
systems of coordinates that will be needed. Wherever
possible we shall adopt the coordinate systems and
notation that have been universally accepted in the
field of celestial mechanics. )

The position of the Earth at any time will be speci-
fied in terms of a set of heliocentric rectangular com-
ponents. As shown in Fig. 3-1, the x and y axes are
chosen in the plane of the ecliptic, with the positive x
axis in the direction of the vernal equinox. The posi-
tive y axis is in the general direction of the perihelion
of the Earth's orbit, and the z axis is chosen to make
a right-handed coordinate system. Unit vectors in
these three directions will be defined, respectively, as
i1, andI,

The line of intersection of the plane of the Martian
orbit with the plane of the ecliptic is called the line of
nodes. The ascending node A is the point at which
Mars crosses the ecliptic with a positive component of
velocity in the z direction. The longitude of the as-
cending node as measured from the vernal equinox will
be denoted by 2. The angle of inclination of the orbital
plane of Mars to the ecliptic is called z.

To specify the location of Mars, a different set of
heliocentric coordinates will be used. The £ and g
axes are selected in the Martian orbital plane with the
positive { axis in the direction of the perihelion of the
Martian orbit. The n and  axes are then chosen, as
shown in Fig. 3-1, to make the system right-handed.
Associated with the three axes are the unit vectors
i¢, i, and i;. The ¢ axis makes an angle w with the
direction of the ascending node.

Let ag, €z and lg be, respectively, the semi-major
axis, the eccentricity, and the semi-latus rectum of the
Earth's orbit, and correspondingly define as, eu, Ly
for Mars. Furthermore, denote by Tz and O, =
Q <+ « the respective longitudes of the perihelions of

Fi1c. 3-1. Fixed heliocentric rectangular coordinates for Earth
and Mars orbits.

the Earth and Martian orbits measured with respect
to the vernal equinox. Finally, if =z and =, are the
longitudes of the planets at the epoch, then, correspond-
ingly, at a time T years from epoch their mean anoma-
lies, Wz and M are given by

Mg = 22T + Zz — Og (3.1.1)
My = (27T/Py) + =y — Oy (3.1.2)

where P, the period of Mars in yvears, is given by
Py = (ay/ag)¥* (3.1.3)

From the mean anomalies, we may compute the
eccentric anomalies E; and E by means of the Fourier-
Bessel expansions

Ep = Mz + 22 (1/n) (nez) sin nMe (3.1.4)

n=]
Ey = My +2) (1/n)Ju(ney) sin ndMy (3.1.5)
m=]
where J, is a Bessel function of the first kind of order n.
The position vectors rz and ry at time I” may then be
determined from
rg = [ag cos ITg(cos Ep — €g) — _
Vaglg sin Og sin Egli: +
[ag sin g (cos Ex — €z) +
‘\/E cos Ig sin Egli, (3.1.6)

ry = ay(cos Ey — ex)ig + Vauly sin Eyi, (3.1.7)

In order to obtain the components of the Martian
position vector ry, in the ecliptic coordinate system, one
may simply pre-multiply the vector ry, regarded as a
column vector, by the matrix

h kL L
M = my M. M3 (318)
) na ny /o -
cos Q cos w — sin 2 sin w cos 1
I+ = —cosQsinw — sin 2 cos w cos ¢

where [,
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\ = ANGLE OF INCLINATION OF TRAJECTCRY PLANE TO PLANE OF THE ECLIPTIC
+ - ANGLE OF INCLINATION OF TRAJECTORY PLANE TO PLANE CF THE WARTIAN OREIT

Fic. 3-2. Local polar coordinate systems of Earth, Mars, and
spaceship orbits.

l; = sinQsint

m, = sin Q cos w + cos Q sin w cos ¢
ms = —sin Qsin w + cos Q cos w cos ¢
m; = —cosQsini

n- = sino wsin ¢

ns = COS w SiO %

n; = costi

Consider now the problem of connecting a point P
on the Earth’s orbit and a point Q on the Martian orbit
by an ellipse whose focus F is sun-centered, as illus-
trated in Fig. 3-2. Let rg and ry represent the vector
positions of P and Q. Then the cosine of the angle 8
between Iz and 7, is obtained from

cos 8 = (rg-ry)/rers (3.1.9)

Since § is measured in the direction of motion of the
planets, the sine of the angle, with appropriate con-
sideration for signm, is given by

sin 8 = sgn (rg X ry+i;) V1 —cos*é (3.1.10)

The unit vector i, normal to the plane of the ellipse and
having a positive component in the i, direction may then
ke obtained from | i

i, = (re X ry)/rery sin 8 (3.1.11)

When computing the vector velocities of the Earth
and spaceshin at the point P, it will be convenient to
use a local polar coordinate system centered at P,
with unit vector i, in the positive direction of rz and
with i, chosen in the plane of the ecliptic and such that
i,, {, and i, form the right-handed triad shown in
Fig. 3-2. The plane of the ellipse is inclined at an
angle x to the ecliptic, with the angle positive in the
direction of a right-handed rotation about #,. Hence,

(3.1.12)

One may readily see that x is positive if, simultane-
ously, # is less than 180° and the point Q is above the
ecliptic or, alternately, 8 is greater than 180° and Q is

COS X = f,'1;

below the ecliptic; otherwise, x is negative. These
facts may be summarized conveniently by means of
the equation

sin x = sgn (-1, sin §) V1 = cos® x (3.1.13)

Similarly, at the point  we introduce a set of unit
vectors i, and 1i,, as shown in Fig. 3-2. The angle »
is the inclination angle of the trajectory plane with
respect to the plane of the Martian orbit and is positive
in the direction of a right-handed rotation about i,.
Therefore,

(3.1.14)

Again one sees that v is negative if, simultaneously, § is
less than 180° and the point P is above the Martian
plane or, alternately, 8 is greater than 180° and P is
below the Martian plane; otherwise. » is positive.
Hence,

cos v = i,-1;

sin » = sgn (—rg-i; sin 6) V1 = cos? » (3.1.13)

We shall close this preliminary section with the der-
ivation of a criterion for determining the sign of the
radial component of the vector velocity of the spaceship
at the points P and Q. For this purpose, let us define
tbe vector i, as a unit vector from the center of force |
F and in the direction of the vacant focus of the ellipse.
Since i, lies in the plane containing both 7, and ry,, it
may be expressed as a linear combination of these
two vectors—i.e.,

l.p - .Fgrg + F_\fr_u (31-16)

By taking the scalar product of i, with r¢ and ry in
turn, we have

lp-Tg = Fzorg® 4+ Fyrgry cos 8
IpTy = Fgrgr_u cos 6 + F_\,r?’_ur:

But if 6, is the angle between 7z and ir, and / and ¢ are, 1
respectively, the semi-latus rectum and eccentricity
of the ellipse, then, using the polar-coordinate equa-
tion for an ellipse, given by Eq. (1.5.1).

ig-Tg =rgcosby = (rg — [j/e
ipfy = racos (fo — 0) = (ryy — N/e
Hence, solving for Fgand F, we obtain

Fg = (1/ergsin® ) {[1 — (I/re)] —

1 = (/ru)lcos8) (3.1.17) B
Fy= (1/erysin®6) { (1 — (I/ry)] — |
(L = (/rg)] cos 8} (3.1.15)

At the point P, the radial component of the vector ¥

velocity of the spaceship and the component of the
vector rg X rpin the i, direction have identical signs. 3
Therefore, it follows from Egs. (3.1.16) and (3.1.11) BB
that the spaceship will be moving away from or toward
the sun according to whether the sign of Fj sin 6 is
respectively positive or negative. Similarly, at the
point (, the corresponding criterion is the sign of
— Fg sin 6.
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(3.2) Procedure for Calculating Round-Trip Trajectories

Essentially the same technique described in Section
(2.4) for determining round-trip reconnaissance tra-
jectories in the simplified model of the solar system
may be used in the three-dimensional version. One
fundamental difference occurs in the method of esti-
mating the point on the Martian orbit where planetary
contact can occur and, subsequently, the point at
which the spaceship will return to the Earth. With
circular symmetry no longer a characteristic of the
model, we are not free to choose arbitrarily the helio-
centric angle §. However, if we postulate a departure
time, T g, measured in years from the epoch, we may,
instead, estimate the time T g, required for the voyage
from Earth to Mars and the time 7T, for return.
The net effect is, of course, the same, in that the angles
6, and 8z are direct functions of these times. As an
aid in the estimation of the times Tp, Tga, and T yg,
the results obtained for the two-dimensional model can
be used to advantage.

The two methods also differ in the manner of deter-
mining the semi-major axis of the spaceship orbit. We
bave no three-dimensional analog of Eq. (2.1.7); in-
stead, since the times of flight are fixed by our initial
estimate, the time-of-flight equation (2.4.1) must serve
as the means for calculating ap and ae.

If. in addition to the departure time, Tp, we specify
the relative departure velocity magnitude, Vzeg, it will
be necessary to repeat the calculation of ap, while
systematically varying the time Tz, in order to ob-
tain a trajectory that satisfies this additional require-
ment. Under any circumstances, this procedure will
be mandatory for calculating the return-trip trajectory
since the vehicle must leave Mars with the same rela-
tive velocity magnitude, Vgyy, with which it arrived.

Before detailing the step-by-step process, let us turn
our attention briefly to the problem of solving the
time-of-flight formula for the semi-major axis a.
Curves of the time of flight, T, as a function of a were
computed from Eq. (2.4.1) and are plotted in Fig. 3-3
for several values of . If the angle 8 is less than 360°
(N = 0), Eq. (2.4.1) defines a as a single-valued func-
tion of T. Therefore, if a trajectory connecting the
points P and Q is possible for a given value of T, it is
unique. On the other hand, if § is greater than 360°, ¢
is a doubled-valued function of 7. Thus, correspond-
ing to each value of T that is sufficiently large to ensure
a solution, two dirferent trajectories are obtained.

For the case in which N = 0, the procedure for ob-
taining @ is straightforward. We first compute the
time of flight T, for the minimum-energy path, for
which @ = a, or, equivalently, a = =, from the formula

T, = (Pn/2){1 — [sgn (sin 6)/7](Bn — sin )}
- (3.2.1)

Then by comparing the given value of T with T, we
find that the upper or lower sign is appropriate in Eq.
(2.4.1) according to whether T is, respectively, less
than or greater than T,. However, if T is less than

T iy

e (ALY

F1c. 3-3. Time of flight from Earth to Mars vs. semi-major axis
of transfer ellipse for various values of the polar angle 4.

the time 7T, required to travel the parabolic path
from P to Q, where

T, =(1/3) ‘\/27-;:., [s32 — sgn (sin 8)(s — ¢)¥?]
(3.2.2

then no solution for elliptical trajectories is possible.
With the feasibility of the elliptical orbit confirmed and
the appropriate sign determined for Eq. (2.4.1), a
simple iteration will produce the unique root.

The situation is somewhat more complex when N is
not zero. If a relevant two-dimensional solution to
the trajectory problem is available, it can be used to
advantage in selecting the proper branch of the curve
@ as a function of 7. In the absence of any such infor-
mation, one can always proceed with the computation,
using both roots, and reject whichever proves unsatis-
factory.

Returning now to the main problem, we shall out-
line a procedure for calculating a nonstop trajectory
for a vovage from Earth to Mars and return, to begin
on a specific date with a prescribed relative departure
velocity magnitude.

(1) A departure time, T'p, is specified that is meas-
ured in years from the epoch.

(2) The mean anomaly of the Earth at the point of
departure, Mg(Tp), is computed from Eq. (3.1.1).
Then, from Eq. (3.1.4), the corresponding ecceatric
anomaly of the Earth. Eg(Tp), is obtained. Finally,
the vector position of the Earth at the time of depar-
ture, rg(Tp), is computed from Eg. (3.1.6).

(3) The vector velocity of the Earth at time T is
obtained from

Ve(Tp) = sgn [sin Eg(Tp)] X

Vil (@rs = lo)/ra] = Ujag)l i +
(Vudelre)iy, (3.2.3)
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(4) An estimate of the time T gy in years required
for the voyage from Earth to Mars is made and the
mean anomaly of Mars, My (Tp + T ), for the point
at which contact with the spaceship will occur is com-
puted from Eq. (3.1.2). The corresponding eccentric
anomaly, Ex(Tp + Tga), and vector position, (T p
+ Tga), are then obtained from Egs. (3.1.5) and (3.1.7).

(5) The heliocentric angle 8p, through which the
spaceship moves on the departure orbit, is calculated
using Egs. (3.1.9) and (3.1.10), from which the linear
distance ¢, measured from the point of departure P to
the point of arrival Q at Mars, is obtained from

¢? = rg? + ru’ — 2rgrs cos fp (3.2.4)

(6) From the time-of-flight equation (2.4.1), with T =
T gy, the semi-major axis ap of the departure orbit is
obtained. Then the semi-latus rectum [, is computed
from Eq. (1.5.9), with the choice of upper or lower sign
made to correspond with the sign used in Eq. (2.4.1)
to produce the root ap.

(7) The vector i, normal to the plane of the departure
trajectory is computed from Eq. (3.1.11) and the result
used in Egs. (3.1.12) and (3.1.13) to obtain the inclin-
ation angle x.

(8) The velocity vector Vpg of the spaceship at the
point of departure is computed from

Vpr = sgn (Fy sin 6p) X
Vil l@re = )/r5*) = (Lap)}i; +
(Vindo/re) (cos xiy + sin xiz)  (3.2.3)

where Fy is defined in Eq. (3.1.18).

(9) The vector velocity Vgg of the spaceship rela-
tive to the Earth at the point of departure P may then
be computed as the vector difference

VRE = Vpx - xiTD) (3-2-6)

(10) The magnitude of the relative velocity Ve may
now be compared with the prescribed value. If the
two differ by more than a tolerable amount, a new esti-
mate for T gy must be made and steps (4) through (9)
repeated. :

(11) When an Earth-to-Mars orbit has been found
that satisfies the initial departure conditions, we may
then determine the relative velocity of the spaceship at
Q, the point of contact with Mars. For this purpose,
the vector velocity of Mars at time T, + T gy is com-
puted from

VulTp + Tsa) = sgn [sin Ey(Tp + Tey)] X
Vull@ry — L)/rt] = (aw)li, +
(Vudy/ra)i, (3.2.7)

and the vector velocity of the spaceship at the point
Q from

Vou = sgn (—Fpg sin 6p) X
Vil [@ru — )/rut] = (ao)}i, +
(V slo/rs) (cos »i, + sin vip) (3.2.8)
where Fg is defined in Eq. (3.1.17) and the inclination
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ang!e v is obtained using Egs. (3.1.14) and (3.1. 1:;) 1.
Finally, the relative velocity Vzy is computed as the ¥
vector difference 3

VBI’ = VQ"( —; Vu(Tp + ng) (3.2.9)

(12) To obtain a return trajectorv, the procedure is 3
precisely the same. The spaceship departs from Mars
at time Tp + Tgx and arrives at Earth Ty years %
later. As before, the time for the trip from Mars to ;
Earth is a result of the iteration process used for de- 4
termining a trajectory whose relative velocity magm- 3
tude Vgy at Mars is prescribed. 3

(13) As a final step, we must determine the orien- j
tation of the spaceship with respect to Mars that must
be effected during the period of contact in order to ¥
accomplish the transfer from the departure orbit to the
return orbit. Let Veyp and Vizyr be, respectively,
the relative velocities with respect to Mars of the ve-
hicle on the departure orbit and the return orbit. The "4
turn angle 26 may be computed from

[ Veur X Veup J

.VRM z

sin 25 = (3.2.10) %
and the passing distance D from Eq. (2.4.3). -

If the vector product in Eq. (3.2.10) has a positive _
component in the { direction, we shall say that the
spaceship passes ahead of Mars; otherwise, the ship 3
passes behind the planet. Furthermore, this vector %
product defines the orientation of the plane of relative 3
approach to Mars. -

(3.3) Comparison of Results With the Simplified Model

The computational procedure for determining three- ¥
dimensional round-trip trajectories has been programed 3
for a digital computer. The input to the program con- 3
sists of a departure time Tp and a departure velocity 3
Vze, together with estimates of the times required for 1
the trips to and from Mars. E

Several of the two-dimensional trajectories found in
Section (2) were recalculated in the three-dimensional .
model. The same departure velocity of 0.13 times the |
Earth’s orbital speed, or 12,709 ft. per sec., was used.

The time of departure T, was selected so that the dif- .

ference of the mean longitudes of the planets would be %
the same as the heliocentric angular difference 4 g, be- §
tween Earth and Mars tound in the two-dimensional 38
solution. The time-of-flight estimates were likewise 3
taken directly from the results in the simplified model. 3
For comparison purposes, the corresponding tra- 4§
jectories are represented schematically in Figs. 34 8
through 3-9. In each case, the circles shown are sun-
centered, with radii equal to the mean distances of the 3
Earth and Mars. The major axes of the true elliptical,
orbits of the planets are shown as broken lines, with the 3
peribelions and aphelions appropriately marked Pg7
Ag, and Py, Ay. The line of nodes is also shown as.
a broken line, with the ascending and descending nodes 3
labeled AN and DN. The positions of the planets at}

the times of departure, arrival at Mars, and return to

the Earth are denoted by the letters E and )/ with ]
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respective subscripts D, 4, and R. The point of de-
parture from the Earth E, is approximately the same
for two models; however, the points of arrival at Mars
and return to Earth are different. The primed symbols
correspond to the three-dimensional model, while the
unprimed symbols correspond to the two-dimensional
model. The major axes of the departure and return
orbits for both cases are shown as solid lines, with the
perihelion and aphelion points labeled and the positions
of the vacant foci marked.

Together with the diagrams are shown. some of the
data for the three-dimensional trajectories. These
data may be compared with Table 1 of Section (2).
As a result of this comparison, certain general con-
clusions may be drawn, which are discussed below.

The most striking difference between the two models
is seen for those trajectories in which the point of de-
parture from the Earth and the point of arrival at the
planet are nearly 180° apart. For the case of co-planar
planetary orbits we have seen that this configuration
of the planets gives rise to the absolute minimum-
energy transfer ellipse. In the three-dimensional
model, even though the angle between the two planes
is less than 2°, the situation is considerably altered.
If the diametrical position of the points of departure
and arrival lie on the line of nodes, the orbital plane of
the spaceship may be chosen arbitrarily. On the other
hand, since this plane must always contain the three
points determined by the positions of Earth, sun, and
Mars, a large angle of inclination to the ecliptic can re-
sult when these three points are not distributed on the
line of nodes. In particular, when the diametrical
position of the planets is at right angles to the line of
intersection of the orbital planes of the plapets, the
trajectory plane will be at right angles to the plane of
the ecliptic.

This point is rather dramatically illustrated when
trajectories No. 1 and No. 6 are contrasted. In many
respects the two seem alike. For each, the spaceship
leaves at roughly the same time, contacts Mars at
essentially the same point in space after some six
months, and each returns to Earth at approximately the
same position. However, we note that for the return
orbit the points of arrival at Mars and return to Earth
are 184.76° apart for trajectory No. 1 and 182.75°
apart for trajectory No. 6. The inclination angles of
the return orbits are, respectively, 4.671° and 14.481°.
We further note, in the latter case, that a 44° rotation
of the relative velocity vector at Mars must be effected
in order to transfer from the departure orbit to the
return orbit. The gravitational field of Mars is inade-
quate to accomplish this transfer, as seen from the fact
that a mathematical solution is obtained only by per-
mitting the spaceship to pass more than 1,200 miles
beneath the Martian surface.

Still another difference between the two models is
apparent in the manner ot approaching Mars. In the
two-dimensional model, all motion takes place in a
single plane. Even in.the three-dimensional model,
except for the singular situation noted, the inclination
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563
DEPARTURE TIME: DECEMBER 13, 1964
DEPARTURE ORBIT: RETURN ORBIT:
_ O - 13879 8, = 54476
Veeo = 89431+ 10591,- 10655, @, L o 706374 101280, pea2,
Yauo = ‘Irula-.,-?sw:‘.muc Viiin Isﬁli.-?éﬂi‘-lﬂlfc
Yrep = 12709 it/sac Vaex = 15210 f/sac
Vaup = 18711 ft/sac Tue = LM69 yeors
rplTp) = 0.9843 AL ay = 1.3076 AL
ry(Tge Tgy) = 1.5800 AU € - 0.2512
Tp = 6.951 years Xp = 4671
Tew = 0.5262 years vy = -28400
o ;.f,:ﬂ Al PLANETARY CONTACT:
i 2 - 15419
o = :i::: d = 3110 miles
m = THE VEHICLE PASSES AHEAD OF MARS IN A
PLANE INCLINED 87.266° TO THE MARTIAN
ORBIT.
F16. 34. Trajectory No. 1.

DEPARTURE TIME: DECEMBER 4, 1964

DEPARTURE ORBIT: RETURN ORBIT:
o = 13487° oy - ST5e
oo Vep - 18651, 124287, 18897,  Vpgn . -~ 74620, TI931 4 22667,
v,

RND * :254?;',-5333‘:‘.123;57‘ W= 15;;73:_..3«:?17‘_mm:C
Yaep = 12709 fr/see Vagn = 39194 h/sac

Yaup = 13569 i1/ sec Typ = L3902 yeors
re(Tp) = 0.9854 ALY, i .
E''D

ag - 13185 AU
y(Tg e Tey) = 16023 AU, e - 02583
Tp = 6.977 yeors xn = lL481e
Tey = 0.4943 yoors - -2
op = L3785 AU Kl
L PLANETARY CONTACT:
o g 18 - 4L 20
xp = 0.970% d o =122 miles -,
wp = 1031 THE VEHICLE PASSES AHEAD OF WARS IN A
PLANE INCLINED 71.862 TO THE WARTIAN
ORBIT.
Fi6. 3-5. Trajectory No. 6.
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DEPARTURE TIME: DECEMBER d, 1964

CEPARTURE ORBIT:

o = 134.87¢
Vago - 18657, 124280, 12897,
Vauo = maﬂ,-sszs?,-mﬁ(
Yagn = 12709 f1/sec
Yaup = 23569 ft/3ac
relTpl = 0.9854 AL
raiTp Tey) = 16023 AU
Tg = 6.927 yeors
Tew = 0.4941 yeors
oy = 12785 AU
€y - 0.2853
xo = 0.970°
= 1031
Fic. 3-6.

RETURN ORBIT:
o - 624.95°
Vagn = 219471 85771, 13017,
Vaun = 218051, 87297, 19167,
Vagr = 22599 f1/sec
Tyg = 26128 years
op = 13123 AU,
€ = 02176
xp = 0.690°
vg = L&Sé°
PLANETARY CONTACT:
3 - 64200
d - 6611 miles

THE VEHICLE PASSES AHEAD OF WARS IN A
PLANE INCLINED 16.598* TO THE WARTIAN
ORBIT.

Trajectory No. 7.

DEPARTURE TIME: FEBRUARY 28, 1965

CEPARTURE ORBIT:

L]
?::n
LE]
RED
Yauo
e fTo‘

v

WTo=Tey)
To

Teu

*

fn

*p

b+ |

219.91

E185T . 107497, 8o,
245937, - 13887, - 26287
12709 i1/ sec

26230 i1/ see

0.9906 A L.

14148 A U.

7160 yeors

10744 yeors =
1.3168 AU

0.2545 -

1,455+

=273

Fic. 3-7.

RETURN ORBIT:

o - 510.00°
Vaen = 90547, - 102023, 35037,
Vaur = - 243601, - 87307, - 42807
Vagn = M1M4 fi/sac
Tug = 1.9527 yeors

oy = 1.3062 AU

€ = 0.2574

xn = 1.848*

o= =215
PLANETARY CONTACT:

13 . 1706
d = 25519 miles
THE VEHICLE PASSES BEHIND WARS N A

PLANE INCLINED -J1.518* TO THE MARTIAN =
ORBIT. y

Trajectory No. 9.

DEPARTURE TIME: APRIL 27, 1940

DEPARTURE OREIT:
fp = 47042

Vi
Yauo
Yrep

Vaup

rglTyl
lToe Tey
To

Teu

%

%

¥p

o

-~ 1790, - 120167, 37297,
20477, - 74097 4 8137
12709 h. sec

D26k i sec

1.0066 AL

5+ WX

1319 years

L9259 yers

13573 A L.

0.2554

- L.y57

0.4a2*

RETURN CORBIT:
4y = 187340
Vaen = 172957, - 85777, 35197,
Vpur = 210407, 298717, - 10927 .
Vagr = 19623 it sec
Tyg = L1814 years
ag = 1.2755 AU
€ = 0.2534
xg = 1.921*
vy = 0.812¢
PLANETARY CONTACT.

25 - 7.785*
d = 5179 miles
THE YEHICLE PASSES AHEAD CF MARS IN A

PLANE INCLINED 32.082° TQ THE MARTIAN
CREIT.

Fic. 3-8. Trajectory No. 11.

DEPARTURE TIME: APRIL 1, 1940

DEPARTURE ORBIT:

L
Vaeo
Yauo
Vaeo
Yauo
rEfTD'-l
r“fTD ‘YEG‘
Tp
Teu
‘%

%

Xpo

b -]

amn-

- 5577, - 115357 - 39767,
B, - 7T g0 1T7TS
12709 1. sec

2467 br. sac

L9995 AL

LI AL

1250 yeors

LIS yewrs

10 AL

[ V.o

-1m83

Lar

Fic. 3-9.

RETURN ORBIT.

o = W0L81°
Vuen = -138015, - 88171, 92835,
Vrun - 206907, - 98177 - 6567 -
Vyegn = 18859 ft/sec
Tyg = 0.9675 yeors
ay = L2755 AU
€ - 0.2512
x = 4945
- - L9090
PLANETARY CONTACT:
3 . 12730
d = 1666 miles

THE VEHICLE PASSES AHEAD OF WMARS IN A
PLANE INCLINED £3.873* TO THE MARTIAN
QREIT.

Trajectory No. 13.
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angles of the planes of motion of the spaceship are small.
However., as viewed from the surface of Mars, the
angular orientation of the plape of approach is cer-
tainly not small. Thus. in the vicinity of Mars, the
true relative motion of the spaceship and planet is not
at all adequately approximated by the two-dimensional
model.

A third point of contrast has to do not so much with
the three-dimensional nature of the solar system as
with the ellipticity of the planetary orbits. In the
elementary model, the planets were assumed to move
in concentric circles about the sun whose radii were
taken as the corresponding mean distances. The ap-
proximation is relatively good for the Earth, whose
eccentricity is only about 0.0167. However, for Mars
with an eccentricity in excess of 0.0937, the difference
between the closest and farthest distance from the sun
is almost 3/10 of an astronomical unit.

The effects of the ellipticity of the Martian orbit
were very apparent when the three-dimensional solu-
tion for trajectory No. 1 was attempted. Since the
difference of the mean longitudes of the two planets
Earth and Mars is the same every 2.135 years, it would
scem at first that departure dates that differ by this
amount should produce essentially the same solutions.
However, primarily because of the varation in the dis-
tance from Mars to the sun, it was impossible to obtain
a departure orbit for trajectory No. 1 with a departure
velocity of 0.13 times the Earth’s orbital velocity before
1964. For earlier dates, the point of contact with Mars
occurred too near the aphelion of the planet.

One final comment seems appropriate concerning the
relative merits of the several trajectories considered.
Although the departure velocities were all the same,
the velocities with which the spaceship returns to
Earth are seen to vary from 14,000 to well over 20,000
ft. per sec. These differences are of fundamental im-
portance to the problem of re-entry of the vehicle into
the Earth's atmosphere.

(3.4) A Classof Round-Trip Trajectories

The particular solutions to the round-trip problem
discussed in the previous section serve to illustrate
some of the various types of possible reconnaissance
trajectories. However, one should not infer that such
solutions are isolated events. On the contrary, during
appropriate seasons of the year, round-trip trajectory
solutions exist as a continuous function of the departure
time. It is of interest to determine how certain char-
acteristics of these solutions vary with the time and
velocity of departure.

For this purpose, the particular class of trajectories,
of which trajectory No. 7 is a representative member,
was examined in full detail. Three departure velocities
were selected—namely, 12,200, 13,000 and 13,800 ft.
per sec. Then solutions corresponding to these veloci-
ties were obtained at various instants of time, both
earlier and later than December 4, 1964, which is the
departure time for trajectory No. 7. To obtain a con-
tinuous pattern of solutions, regular intervals of time

Ti o
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Fic. 3-10. Passing distance at Mars vs. departure date for
various values of departure velocity.

were selected and the time-of-flight estimates needed
for the digital computer program were made sequen-
tially, based on the time requirements of each previ-
ously obtained solution. In this way, we were assured
of producing only the trajectory solutions belonging to
one particular class. The interval of departure times
during which solutions were obtained using this pro-
cedure extends from early in November, 1964, until
late in March, 1965. Immediately prior to November,
1964, and just after March, 1965, the configuration of
the planets is unfavorable for a reconnaissance mission
with the stated velocity specifications.

In the accompanying figures, a few of the important
elements of these solutions are plotted as a function of
the departure time. The passing distance at the point
of closest approach to the surface of Mars is shown in
Fig. 3-10. During the first week in November, 1964,
the point of departure from Earth and the point of
arrival at Mars are nearly 180° apart. No solutions
were obtained in this period because of the excessive
velocity requirements out of the plane of the ecliptic.
As time increases, the departure angle 8, decreases and
round-trip solutions are possible. From late in No-
vember to the early part of December. each of the con-
stant-departure-velocity curves attains a minimum.
Within ten days following the minimum, the required
passing distance increases to such an extent that
planetary contact becomes impossible.
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F1G. 3-11. Velocity relative to Mars vs. deparwure date for var-

ious values of departure velncity.
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Fi1c. 3-12. Return velocity relative to Earth vs. departure date
for various values of departure velocity.

Early in January, 1963, solutions are again obtained;
the required passing distance decreases steadily until
sometime in the middle of February, when mathe-
matical solutions are possible only by permitting the
point of closest approach to fall below the Martian
surface. During this period of time in February, the
point of arrival at Mars and the point of return to Earth
are nearly 180° apart. Later in February and early in
March, the return angle 6z increases and physically
realizable solutions are again possible.

In Fig. 3-11, the velocity of the spaceship relative
to Mars is plotted as a function of departure time.
Similarly, the velocity relative to the Earth with which
the spaceship returns to Earth is shown in Fig. 3-12.
For the particular choice of departure velocities, the
velocities relative to Mars vary from 18,000 to 27,000
ft. per sec. during 1964 and from 25 000 to 29,000 ft.
per sec. during 1965. The vanations in the return ve-
locity are much greater and, indeed, we observe the

with a velocity smaller than the one with which 1t Jert.

In 1964, all solutions require the spaceship to move
through a heliocentric angular distance of less than 180°
for the trip from Earth to Mars. During the return
trip, the ship must orbit the sun once, traversing an
angular distance greater than 340°. Roughly six
months is consumed on the outbound leg, and two and a
half years on the return voyage. In January and the
first part of February of 1963, the outbound trip re-

/ curious fact that the spaceship can return to Earth

Vg = VLI
i3
. Vg o 11008 b e
144! .

Vo = 12790 b

AGLE BET WM MARTIAN An0 RELATIVE wOTH0N PLAMES (DECREEL

4 ]
ocT oy - 24 Jam y res

T L]
Fic. 3-13. Angle between Martian and relative motion planes
vs. departurc date for various values of departure velocity.

quires a little more than a year and an angular dis-
tance of some 250°. For the return trip, the ship must
again orbit the sun and arrive back at Earth after
approximately two years and an angular travel of
less than 540°. Late in February and March the re-
turn angular distance traveled is greater than 540°,
while the outbound-voyage characteristics remain essen-
tially unchanged. It is interesting to note that the
total time of 3.2 years required for the trip does not
vary by more than two months for any solution in the °
class.

Concerning the manner of approaching Mars, the
1964 solutions require the spaceship to cross the orbit
of the planet heading away from the sun. The relative
motion is such that the dark side of the planet is pre-
sented to the ship during the greater portion of the
period of contact. On the other hand, in 1965 the
spaceship intersects the Martian orbit heading toward
the Sun and the bright side of the planet dominates
the field of view. In Fig. 3-13, a plot is shown of the
angle between the normals of the Martian orbital plane
and the plane in which the relative motion takes place.
We see, for example, that in the first month and a half
of 1965 the spaceship moves in a plane that is roughly
perpendicular to the Martian orbital plane.

In order to gain a clearer understanding of the char-
acteristics of these round-trip reconnaissance trajecto-
ries, a typical one has been mapped out in detail. The
diagrams of Fig. 3-14 show various stages of the out-
bound and return trip of a spaceship departing on
January 23, 1965, with a velocity relative to the Earth
of 13,800 ft. per sec. The orbits of the spaceship and
of Mars are shown as solid lines when above the plane
of the Earth’s orbit and as broken lines when they are
below.

Contact with Mars would be made on April 4, 1966,
when the vehicle would pass within 4,850 miles of the
planet’s surface. The orientation of the plane of rela-
tive motion of the spaceship with respect to the Martian
orbital plane is shown in Fig. 3-14c. In this illustra-
tion. Mars 1s moving from right to left, the direction to
the sun is indicated by the large arrow pointing toward
the lower right, and the point of closest approach is i
shown by the small arrow. The primary effect of the .. §!
Martian gravitational field is approximately to double “§.
the component of the spaceship velocity normal to the =
planet’s orbital plane. The result, as can be seen =
from the diagrams, is a rotation of the line of nodes of 3§
the spaceship orbit by some 60°. Furthermore, the
inclination to the ecliptic of the orbital plane changes <3
from 0.805° for the outbound path to 2.324° for the 2
return path, and the period is reduced from 1.53 years Z
to 1.49 years. Finally, the vehicle would return to the "
Eartb on March 24, 1968, after a voyage lasting 3 =3
years and 58 days. - 8
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Frc. 3-14. Sample round-trip reconnaissance trajectory to the planet Mars.




