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HIS paper essentially extends the work of Lawden (1).?

The problem considered is the minimization of characteris-
tic velocity, or the amount of fuel consumed, using two
impulses.

Lawden studied the case of transfer from an elliptic orbit
to a higher energy circular orbit. Consider a space vehicle
traveling in an elliptic orbit with velocity components (u, »)
resolved perpendicular to and along the radius vector. Sup-
pose at some point on this elliptic orbit the space vehicle isat a
distance « from the focus, with velocity components (uq, vo).

Suddenly an impulse is applied, giving rise to new com-
ponents of veloeity (u, v;). The vehicle then goes into a new
elliptical orbit, the transfer ellipse. Upon arrival at the
higher energy circular orbit, a second impulse is applied,
correcting the space vehicle’s velocity components to those of a
circular orbit at a distance 3 from the focus. The characteris-
tic velocity is given by

Vim = uw) + (o = 0) + Ve — (u/B))2 + 02 (1]

Lawden then defines dimensionless parameters z, y by
w=zVu/a u=yVua 2]
w=1wVp/e 3]

This transformation reduces the problem to minimizing

U = Io V i/

Vie-—zr+@—wrt+ V= 2o g +3r -2 [4]
subject to
Q—rizr+ 9 2 2L —71) (51

where r = a/8. .

For the case where r is approximately unity, an analytic
estimate can be given. An example of this is transfer from
anywhere on a nearly circular orbit to a higher energy neigh-
boring circular orbit (see Fig. 1). A second example is trans-
fer from the near apogee region of an elliptic orbit to a bigher
energy circular orbit (see Fig. 2).

Case 1l

Consider a small quantity e > 0. Let
r=1—¢ 61
Rewrite Equation [4] as
Viz - z) + (y — ) +
Vie—rlp+y2+Br—2-1r) [7)

Using Equation [6], and omitting terms in e of order higher
than one, Equations (7 and 5] become

Vi =z + @ — w2+ Viz— 1+ 3/2el + 12 [8]
2t + (37/2€) 2.1 9]

Equations [8 and 9] can be given a geometric interpretation.
The first member of [8] represents the distance from (z, y) to
(z0,40), the second the distance from (z,y) to [1—(3/2)e, 0].
The constraint given by Equation [9] says (z,y) must
lie on or outside the ellipse given by the equality in Equa-
tion [9]. As is presented in Fig. 3, any point on the dashed

Received June 4, 1959.

! Dynamics Group, Research Mathematician, Member ARS,
* Systems Section, Research Dynamicist.

3 Numbers in parentheses indicate References at end of paper.

120

D

Fig. 1 Transfer from nearly circular orbit to a circular orbit

Fig. 2 Transfer from near apogee region to a circular orbit
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Fig. 3 Optimum solution for r slightly less than unity

Fig. 4 Transfer from outside of circular orbit to circular orbit

line connecting (zo,y0) to [I — (3/2) ¢ 0] gives the mini—
mum characteristic velocity., Once (Zopt, Yope) 1S found (uy.ope
Pope) IS given by Equation [2]. From Lawden’s results the
second impulse is determined.

A second case of interest occurs for r slightly greater than
unity (see Fig. 4).
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Fig. 5 Transfer for r slightly greater than unity

Case 2 .
Consider a small quantity € > 0

r=1+4c¢ [10]
To a first-order approximstion Equations [8 and 9] become

Vi =2+ - wr+
Vix = 1+ @/2)ellr + ¢ [11)

v
2e

1A

P 1 [12]

The solution to this minimum problem, owing to constraint
[12], is given by some (z, y) in the region (see Fig. 5) between
the two branches of a hyperbola. There are two subcases
here of interest: :

1 Coordinate (zg,y,) lies inside the branch containing
[1 4+ (3/2) ¢, 0]. The minimum is given by the point of
nearest tangency of an ellipse with foci at (zo, %o), (14 (3/2) ¢,
0), and the branch of the hyperbola (see Fig. 6). Courant
and Robbins (2) have treated this type of minimum problem.

*2  Coordinate (zg,y,) lies anywhere in the plane outside of
the region given by subease 1. For this situation the answer
is found by joining (zo,%0) to [1 + (3/2) €, 0] and choosing any
(z, v) on this line lving in the region (see Fig. 7).

A different case of interest is for r close to zero. An example
of this is transfer of a space vehicle near the Earth’s surface to
a higher energy circular orbit at a considerable distance from
the Earth’s surface (see Fig. 8).

Case 3
Consider a small quantity e > 0. Let
r=c¢ (13

Neglecting terms in € higher than first order, Equations [4 and
5] become

VE—zl+@—wr+ Vi +y?—2+3¢ [14]
-2 = —2 (15)

Lawden concludes in his analysis that the answer to the
minimum problem occurs on the boundary given by the equal-
ity in Equation [15]). This reduces Equation [14] to

Vi =z + @ -y + Ve (16]

From Equation [16] we observe the answer is given as the
intersection point of the normal from (z¢,5) to the circle given
by the equality in Equation [15].

Lawden's results are confirmed if a geometric interpreta-
tion is given to Equations [14 and 15] (see Fig. 9). The first
member of Equation [14] gives the distance from (z, y) to
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Fig. 6 Optimum {ransfer for (zo, y,) lying inside branch of
hyperbola
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Fig. 7 Optimum solution for (zo, yo) lying outside branch of
hyperbola

Fig. 8 Transfer from near Earth’s surface to a distant circular
orbit :

{Xg 1)

Fiz. 9 Optimum solution for transfer from near Earth’s surface
to a distant circular orbit
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{z0,0), the second gives the length of the tangent from (z, y)
to the boundary curve given by the equality in Equation [15].
The normal distance is less than the sum of any other two
distances.
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Nomenclature

u = velocity component, perpendicular to the radius vector

velocity component along the radius vector
distance from focus of point on elliptic orbit
radius of higher energy circular orbit
gravitational constant

dimensionless parameter related to u
dimensionless parameter related to v

ratio of @ to B

small positive quantity
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Projected Orbits of 24-hr
Earth Satellites

LOUIS B. WADEL!
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The projected orbit of a 24-hr Earth satellite is a *““figure
8,”” oriented north-south and centered at the Equator.
This path is ealculated in terms of latitude and longitude
as a function of the angle made by the satellite’s orbital
plane with the Earth’s equatorial plane. If this angle is
zero, the path reduces to a single point on the Equator.

SATELLITE in a circular orbit about the Earth (assumed
spherically symmetrical) will have a period of rotation
equal to the Earth’s rotational period if its altitude above the
surface of the Earth equals approximately 22,000 miles (1).2
If the orbit lies in the plane of the Equator and the satellite
moves eastward, the projection of the orbit upon the Earth’s
surface consists of a single stationary point on the Equator.
If the orbit makes an angle & with the equatorial plane, the
orbit’s projection is a closed “figure 8" path, oriented north-
south, centered at the Equator which it crosses at 12-hr
intervals, and reaching extreme latitudes of =a. Detailed
properties of this path are calculated below as a function of a.
The projected path will be obtained by first calculating the
projected orbit’s great circle path in terms of latitude and
longitude for a fictitious nonrotating Earth, and then modify-
ing the results to account for the Earth’s rotation. The
general equation for a great circle is (2)

cos @ = ¢ sin @ cos @ + ¢z sin @ sin 0 11

where

# = eastlongitude
¢ = 90deg — A
= north latitude

Crossing of the Equator may be assumed to occur at 8 = 0,
and the resultant path shifted later to any other crossing
point desired. The Equation [1] must be satisfied by the
point § = 0, = 90 deg, requiring ¢; = 0, and consequently

cztan psin f =1 21
Differentiating Equation [2] and setting d¢/df = 0 yields
c2 = cot pm = tan \n = tan 3]

where ¢, is minimum ¢ obtained, corresponding to M.,
maximum latitude reached. The great circle Equation [2]
can now be expressed as

tan ¢ tan @ sin § = 1
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or

tan o cot A sin f = 1

On the surface of a sphere the equation for differential
element of arc length ds is given (2) by

(ds)*/R.2 = [1 + sin? ¢(df/d)*|(d$)? (5]

where R, = radius of the sphere (Earth).

Equation [5] may be divided by (df)? and, for the present
case of constant speed travel, ds/dt set equal to a constant V.
Then, utilizing the relation [4] between ¢ and 8, Equation [5]
may be integrated to yield

sin A = sin a sin (V/R,)t = sin « sin w,t = sin « sin 27t [6]
where

w, = angular velocity of Earth in radians per day = 27
t = time in days measured from time of Equator crossing

Equation [4] may be rearranged as
sin = cot o tan A 71

Once « is specified, latitude can be calculated as a function of
time from Equation [6], and then longitude (for a nonrotating
Earth) calculated from Equation [7]. The actual geographi-

r X\ =90° (NORTH POLE)

LA =-90° (SOUTH POLE)
Fig. 1 Projected orbits
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