Chapter 10
INTERPLANETARY TRAJECTORIES

1. FUNDAMENTAL DATA

Chapter 1, Sections 7.1 and 7.2 and the tables in the appendices describe
the scene of operations in travel between the planets of the Solar System.

Of the planets, Mars and Venus are the most easily reached, according
to energy requirements. Mars presents a much simpler landing problem
than Venus since not only is its mass less than one seventh that of Venus,
resulting in a much weaker gravitational field to overcome, but surface
conditions are not nearly so rugged.

Voyages to the other planets, except Mercury, are orders of magnitude
more difficult to accomplish.

A number of terms frequently used in describing interplanetary con-
figurations are illustrated in Figure 10-1 in which E is the Earth and S is
the Sun. The letters V and J refer respectively to an inferior planet (one
that orbits inside the Earth’s orbit) and to a superior planet (one that orbits
outside the Earth’s orbit).

A superior planet on the observer’s meridian at apparent midnight is
said to be in opposition (configuration SEJ ).

A planet whose direction is the same as that of the Sun is said to be in
conjunction (configurations EV,S, ESV,, ESJ,); an inferior planet can be in
superior conjunction (configuration ESV;) or in inferior conjunction (con-
figuration EV,5).

The angle the geocentric radius vector of the planet makes with the
Sun’s geocentric radius vector is called the planet’s elongation (for example,
configurations SEV, or SEJ,). It is obvious that an inferior planet has
zero elongation when it is in conjunction and maximum elongation (less
than 90°) when its geocentric radius vector is tangential to its orbit (con-
figuration SEV,). The elongation of a superior planet can vary from zero
(configuration SEJ,) to 180° (configuration SEJ,). When its elongation
is 90° it is said 1o be in guadrature (configurations SEJ, and SEJ;). These

306

Sec. 1] Fundamental Data 307

&
b
A T W e p
s
Vs
Figure 10-1

]

quadratures are distinguished by adding eastern or western; in the diagram
the north pole of the ecliptic is directed out of the plane of the paper so that
Js and J; are in eastern and western quadratures respectively.

The diagram has been drawn for coplanar, circular orbits; the actual
planetary orbits are ellipses of low eccentricity in planes inclined only a
few degrees to each other so that the terms defined above are obviously
still applicable.

Another useful concept, the synodic period S of a planet, was defined in
Section 8.3.7 and may be taken in the present context to be the time
between successive similar geometrical configurations of planet, Earth and
Sun. If T, and Ty are the sidereal periods of revolution of planet and

~ Earth about the Sun respectively, then
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for an inferior planet, while
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for a superior planet.
These relationships are derived for circular, coplanar orbits and there-
_forc apply only approximately to the Earth and any other planet in the
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Solar System. The mean synodic periods for the planets are given in
Appendix 111 : .

2. THE SOLAR SYSTEM AS A CENTRAL FORCE FIELD

The dominant gravitational field of the Sun, due to its mass being over
one thousand times that of the most massive planet, means that in space
a few million kilometers away from any planet, a vehicle moves in a gravita-
tional field closely resembling that of a simple central force field, namely,
the Sun's, in which the intensity falls off as the square of the distance
from the Sun. The formulas and conclusions of Chapter 4 and those sections
in Chapter 8 devoted to transfer in a single force field may therefore be
used with a high degree of confidence in the study of interplanetary transfer
operations.

Near the planets, at distances from them given approximately by the
sphere of influence argument, there exist regions where the force fields of
both planet and Sun are present in comparable intensities, and for precision
studies, the special perturbation methods of Chapter 6 must be used,
though in many feasibility studies, the approximate methods sketched in
Chapter 8 can be applied with confidence. That this is so may be seen by
studying Tables 10.1 and 10.2 and also Figure 8-13.

In Table 10.1, values of the radii r, of the planetary spheres of influence
are given in millions of kilometers, in astronomical units, and in fractions
of the planets’ mean distances from the Sun, the figures being computed
by using formula (5.70), namely,

where m and M are the masses of planet and Sun respectively, and rp is
the planet’s semimajor axis. The consequence of the fall-off in intensity
of the Sun’s gravitational field with distance from the Sun is evident on
comparing the sizes of the spheres of influence of Earth and Pluto (of
comparable mass). The latter sphere is over thirty times as large as the
former and, in fact, is two thirds as extensive as Jupiter’s though the mass
of Jupiter is about three hundred times that of Pluto.

The more flexible sphere-of-influence argument of Section 5.12 giving an
outer and inner boundary led to the graph in Figure 8-13, where a shell
about a planet could be defined for any accepted degree of perturbatien,
showing the range (namely, the thickness of the shell) over which special
or general perturbation methods had to be used. Table 10.2 gives, for two
values of |¢|, the boundaries of the shells about the planets in which such
methods would be called for if perturbation ratios greater than [¢| were not
acceplable.
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TABLE 10.1

RADIUS (r,) OF SPHERE OF INFLUENCE

PLANET
MILLIONS FRACTION OF
OF : PLANETARY ORBIT'S

KILOMETERS SEMIMAJOR AXIS AU.
Mercury 0.112 0.00193 0.000747
Venus 0.615 * 0.00569 0.00411
Earth - 0.925 0.00619 0.00619
Mars 0.579 0.00254 0.00387
Jupiter 48.1 0.0619 0.322
Saturn 54.6 0.0382 0.365
Uranus 520 0.0181 0.348
Neptune 86.9 0.0193 0.581
Pluto 340 0.00574 0227

The figures in Tables 10.1 and 10.2 should be taken as merely giving the
orders of magnitude of the spheres of influence, sizes. It should be re-
membered too that the ‘“‘spheres” are only approximately spherical.
Nevertheless, the information embodied in the two tables and in Figure
8-13 does show how the planets in the Solar System can be divided into
two classes where feasibility studies are concerned. In the first class are
Mercury, Venus, Earth, Mars, and Pluto (also the asteroids); in this class
the use of the formulas of a central force field—according to the methods
of Chapter 8—in feasibility studies should be expected to yield fairly
accurate data for interplanetary missions even when perturbation shells
are neglected. For precision studies, of course, special perturbation methods
within the shells must be used.

In the second class are the giant planets Jupiter, Saturn, Uranus, and
Neptune. Feasibility studies of missions involving these planets, especially
the f:u'st two, that neglect the perturbation shells about these bodies, will
provide, at best, orders of magnitude data about transfer times and energy
budgets and cannot give real information about the actual orbits of vehicles
once they have approached to within the outer shell boundary. Precision
studies, of course, can always be carried out for these bodies.

3. MINIMUM ENERGY INTERPLANETARY TRANSFER ORBITS

By assuming the planetary orbits to be coplanar and circular, the formulas
of Chapter 8 may be t_lsed to give information about energy requirements
and transfer and waiting times that are of the right order of magnitude:
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more precise studies, acknowledging that in reality the orbits of the planets
are ellipses of low eccentricity and low inclination to each other, do not
change the picture by an order of magnitude.

A mission from the surface of a planet to the surface of another planet
can be broken up into three phases: (1) ascent from the surface of the
departure planet to the boundary of its sphere of influence; (2) transfer in
heliocentric space to the boundary of the destination planet’s sphere of
influence ; (3) descent to the surface of the destination planet.

Phase (1) may involve entry into a parking orbit about the departure
planet as an intermediate step for checkout purposes before an impulse
puts the vehicle into the prescribed planetocentric hyperbolic escape orbit
giving the required hyperbolic excess velocity at the point where it leaves
the sphere of influence of the departure planet. For high-thrust vehicles
in terrestrial planet missions (Mercury, Venus, Earth and Mars), phase (1)
will last a week at most. _

Phase (2), apart from possible midcourse corrections, will consist of
powerless flight under the dominant action of the Sun’s gravitational field
and will be described very closely by parts of ellipses (allowing for at least
one midcourse correction). This phase accounts for most of the time spent
in transit from one planet to another. p

Phase (3) is the reverse operation of phase (1), involving a capture opera-
tion transforming the planetocentric hyperbolic encounter orbit into a
parking orbit about the planet before the final descent to surface takes
place. Phase (3) will last no longer than phase one in terrestrial planet
missions in general.

A return mission requires the same three phases and is separated in all
foreseeable practical cases from the outward mission by a waiting time
whose length is specified by the orbital elements of both planets and the
performance of the available vehicle. It will be remembered that this
waiting time is the period that has to be spent at the destination planet
before the planets and the Sun are suitably placed for the return trip to
begin.

Total mission time for a return trip (there and back) will therefore be
made up chiefly of two phase (2) transfer times (not necessarily equal) and
a waiting time.

It was seen in Chapter 8 that the most economical transfer orbits between
two particles in circular orbits in a single central force field consisted of
cotangential ellipses (omitting the time consuming bi-elliptic transfer). A
transfer from one planet to another and back again under the consideration
that a minimum of fuel is to be expended will lead to a total mission time
casily obtained by the formulas of Chapter 8. The first person to draw
altention to such minimum energy orbits and compute mission times for
them was Walter Hohmann (Reference 10.1). Taking the planetary orbits
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to be circular and coplanar, the Earth to be the departure body in all
cases, and neglecting times spent in phase (1) and phase (3) maneuvers,
the use of formulas (8.16) and (8.24) gives the transfer time ¢y to be

) [{ﬂh =+ ar)"] T
"r ==L ———— .
8u

where ag, ap are the semimajor axes of the orbits of Earth and planet
respectively, while y is the product of the Sun’s mass and the gravitational
constant.

Now the Earth’s period of revolution T is given by

ag

TE a2 =1
u
where i’ = GIM + m) ~ GM, since mg/M ~ 1/330,000.
Hence
tr = (1 + a)*/5.656 yr, (10.1)

the planetary semimajor axis a being now expressed in astronomical units.

The minimum waiting time ty, is found by using formulas (8.73) through
(8.77) while the total mission time T equals (2t; + ty). The eccentricity
of the cotangential transfer orbit comes from (8.23), namely,

For a superior planet,

3 (102)
1
while for an inferior planet,

e = , (10.3)

where, as in Eq. (10.1), the planetary semimajor axis a is in astronomical
units.

In Table 10.3, the transfer times, waiting times, and total mission times
for round trips to all planets are given, using minimum energy cotangential
ellipses. In addition the eccentricities of these transfer orbits are given.

On examining the table, several statements may be made immediately.

Manned voyages to the planets beyond Mars are rendered out of the
question by the long mission times if orbits close to minimum energy have
to be used. Even if unmanned probes were used, reliability of the compo-
nents over such long intervals of time could not be guaranteed even if
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TABLE 10.3
MINIMUM TOTAL ECCENTRICITY
TRANSFER WAITING  MISSION TIME OF
PLANET TIME ¢ - TIME ty T=2r+ty TRANSFER
(yr) (yr) (yr) ORBIT
Mercury 0.289 0.183 0.76 0.44
Venus 0.400 1.278 2.08 0.16
Mars 0.709 1.242 266 0.21
Jupiter 2731 0.588 6.05 0.68
Saturn 6.048 0.936 13.03 0.81
Uranus " 1604 0.932 33.01 [R5 ]
Neptune 30.62 0.766 62.01 0.94
Pluto 4547 0.061 91.00 095

information collected by the probes’ instruments could be transmitted
over distances of many millions of kilometers.

The mission times for Venusian, Martian, and Mercurian round trips
are not impossible to contemplate for manned voyages, the interesting fact
emerging that the Mercurian mission lasts only about a third and a quarter
as long respectively as the Venusian and Martian missions. The important
factor in these cases is the long waiting time at Mars and Venus before the
return journey can be begun. It suggests that the decrease of such long
waiting times by the use of different transfer orbits compatible with avail-
able energies should have a high priority in the list of factors involved in
planning such voyages.

It is also illuminating to consider the actual velocity requirements for

such transfer orbits. Let us calculate the velocity increments necessary to.

place the vehicle into particular heliocentric orbits. The first increment

- places the vehicle in a parking orbit about the Earth. This orbit, taken to

be circular, is assumed to be at a height of 460 km so that a circular velocity
of 7.635 km/sec is required. To achieve parabolic or escape velocity from
the Earth’s field a further increment in velocity of (/2 — 1) x 7.635 km/sec
must be added. We suppose that this is added tangentially. In theory,
this would enable the vehicle to enter the heliocentric gravitational field
just beyond the Earth’s sphere of influence with almost zero geocentric
velocity (zero hyperbolic excess) and a heliocentric velocity equal to the
Earth’s heliocentric velocity. In order to carry out any interplanetary
mission, the actual escape should be made hyperbolically.

Expression (8.79) gives the hyperbolic excess V with which the vehicle
leaves the Earth’s sphere of influence, radius p, when it receives, at a
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geocentric distance p,, an incremental velocity v, in addition to escape
velocity V,, where :

V, = /2V, = /2Gm/p,. (10.4)
Re-writing (8.79) we have

1/2
V= [? + v 2V, + v,)] ; (10.5)

In Figure 10-2, for the parking orbit about the Earth of height 460 km
and a radius of the outer sphere of influence p taken to be 2.66 x 10° km
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Figure 10-2
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(such that |ep| < 0.01), the hyperbolic excess V is graphed against the
excess v, to escape velocity with which the vehicle leaves the parking orbit.

For a cotangential heliocentric transfer orbit the vehicle will leave the
Earth’s sphere of influence either in the direction in which the Earth is
travelling or in the opposite direction. If the Earth's orbital velocity is
Vs, the first case gives the vehicle a heliocentric orbital velocity of

Ww=V+V; (10.6)
in the second case, the vehicle's heliocentric orbital velocity is
W=V -V (10.7)

The first case places the vehicle in a transfer orbit whose perihelion
distance is 1 A.U.; the second case gives a transfer orbit of aphelion 1 A.U.

Equations (8.21) and (8.22) may be used to calculate the required velocity
increment V, inserting the Earth’s orbital velocity of 29.8 km/sec in place
of \/u/a, when the transfer is to a superior planet and \/p/a; when an
inferior planet is the planet of destination. The second column in Table
10.4 gives the velocity increments required for cotangential transfer to the
various planetary orbits. :

The use of Figure 10-2 then allows the velocity v, in excess of escape
velocity at the parking orbit, corresponding to' the required hyperbolic
excess V to be found. Values of v, appear in column three of Table 10.4.
Also in the table are given the hyperbolic excess V and the velocity excess
v, to achieve heliocentric parabolic velocity at the Earth’s distance from the
Sun, that is to achieve escape from the Solar System.

TABLE 104
‘VELOCITY V(KM/SEC) REQUIRED VELOCITY v, (KM/SEC)
IN ADDITION TO EARTH'S ) REQUIRED

PLANET CIRCULAR VELOCITY Vg BEYOND ESCAPE VELOCITY
Mercury 1.537 2,362
Venus 2497 0.290
Mars 2947 0.396
Jupiter 8.797 3.139
Saturn 10.30 4.115
Uranus 11.29 4831
Neptune 11.66 5075
Pluto 11.82 5.197
Interstellar

space 1234 5.608
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Thus to reach any of the planets, the vehicle must be capable of achieving
a velocity increment of v, km/sec in excess of the escape velocity (10.80
km/sec) from the parking orbit 460 km above the Earth’s surface. Venus
and Mars are well within the range of modern rockets; the asteroid belt
and Mercury should be capable of being reached by the vehicles of the
next decade.

It should be pointed out that no allowance has been made in the above
calculations for transformation of the resulting hyperbolic encounter
with the planet of destination to an elliptic or circular capture orbit about
it. Such a maneuver will require a considerable velocity increment in
itself, since the vehicle will have to reduce its planetocentric velocity below
escape velocity. The size of increment in this maneuver will be of the
same order of magnitude as that involved in leaving the parking orbit
about the planet and entering the heliocentric transfer orbit for the return
journey. It should be noted, however, that the amount of fuel used in the
escape maneuver from the destination planet will be less than that burned
in the preceding capture operation since the mass of the vehicle is diminished
by the mass of fuel burned in the capture maneuver. This statement should
be revalued in the light of the conclusions of Section 10.4.

Summing up, it may be stated that manned or unmanned missions into
the domain of the giant planets of the Solar System are not practical by
chemical rockets though fast unmanned reconnaisances as far as Jupiter
by instrumented probes are probable marginal achievements within the
next ten years. The unmanned exploration of the inner Solar System from
the asteroid belt to Mercury is practical by present-day and near-future
technological standards, but the figures arrived at in this section emphasize
the need to wait for sources of power an order of magnitude better than
chemical fuels can supply before men can be landed upon Mars and Venus
and returned to Earth,

With such power sources, medium-fast transfer orbits can be chosen so
that the long waiting times on these planets can be slashed especially since
an added flexibility is achieved by virtue of the fact that outward and inward
transfer paths need not be of the same eccentricity or have the same transfer
time.

4. THE USE OF PARKING ORBITS IN INTERPLANETARY
MISSIONS

Considerable saving in fuel can be achieved by the use of parking orbits
as storage dumps about the planets of departure and destination. The
well-known analogy to this procedure is the establishment of a number of
base-camps on the route to the South Pole or up the slopes of Mt. Everest,
in which supplies of food and fuel are left for the return journey ; obviously
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this results in a saving of energy. In the literature of astronautics there are
many studies of this use of parking orbits with application to lunar and
interplanetary voyages; Project Apollo (the proposed landing of men on
the Moon) embodies this idea in the lunar landing phase of the mission.
We will consider the method in the following simple example of a journey
conducted from the surface of planet P, to the surface of planet P, and
back to the surface of planet P,. In one case the mission is accomplished
by one vehicle that uses a circum-P, and a circum-P, parking orbit only
for checkout purposes; in the other case, the two parking orbits are used
for storing -fuel tanks. The mission phases are shown schematically in
Figure 10-3 where S is the Sun. The return journey is indicated by the
dotted line and it should be remembered that although it is shown in the
diagram as a mirror image of the outward transfer orbit, in fact a finite
waiting time on P, is necessary before take-off can occur. The orbits of
P, and P, are assumed to be circular and coplanar. The sizes of the -
circular parking orbits are grossly exaggerated for the sake of clarity.

Heliocentric
orbit of A

Heliocentric oytward
transfer orbit-
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Figure 10-3

Then in “procedure one,” the phases of the operation are as listed in

_ Table 10.5.
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