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The general problem of finding Ay-by dates for multiple swing-by missions involves un
iterative search in a space with dimension equal to the number of swingbys assuming the
s launch date and final arrival date are specified. A double swing-by trajectory that visits Mars
and Venus requires a search in two dimensions. [Periodic orbits connecting Earth and Venus
require a search in a space of dimenuion between 10 and 15. This paper reports the results of a
study of the latter class of orbits. The computing procedures are generally applicable to any
multiple swing-by problem. A summary is given of the computational experience gained.

Trajectory data are presented for those periodic orbits which were computed.

Introduction

HE use of a multiple swingby as part of an interplanetary

mission wus cousidered us early as 1925 by Hohmunn!
and 1956 by Croceo.® They each proposed interplanetary
fly-by missions that would take a vehicle pust both Mars and
Venus before returning to Eurth. Several investigators®~*
have subsequently studied this class of mission in more detail.
It was Minovitch,® however, who first recognized the funda-
mental role which the planetary flyby can play in trajectory
design. He saw the planets as sources of free thrust which
could be utilized to project a vehicle from one planet to an-

- other without the use of fuel. In Ref. 7 he described, for
" example. 2 round trip mission leaving and arriving Earth

g

with six intermediate flvbys at Venus, Mars, Earth, Mars,
Earth, aud Venus. [e further proposed an interplanetary
transportation network.! using multiple fly-by trajectories
that would continue indefinitely. In the interest of finding
such trajectories it has been proposed that the natural period-
icity ol the solar svstem be used to develop periadic orhits.?

For the orbit to be periodic, the spacecraft must recurrently
fivby a sequence of planets.  The first and last flvby of the
sequence must therefore occur at the sume planet with identi-
cal spacecrait velocities and absolute plunet orientations.
For this resson the duration of one period of an acceptable
orbit is restricted to integral multiples of the time required for
the encountered planets to repeat their absolute orientation.
Ideally u pericetly established periodic orbit would result
in no subsequent thrust requirements. In practical applica-
tion injection errors and small perturbations irom the periodic
orbit will inevitubly be present. Hickman'® has shown,
however, that the guidance requirements for nominal periodic
orbits connerting Farth and Venus are quite reasonable.

Although periodic orbits are perhaps the most difficult
of the multiple swing-by problems to analyze, their large
number of <wingbys make them particularly interesting.
The computing procedures are generally applicable to any
multiple swine-by problem. Rall,' for example. has used
the techniques reported here to find periodic orbits connecting
Earth and Muurs.

Received August 14. 1969: presented as Paper 69-931 at the
ATAA/AAS Astrodvnamies Conference, Princeton, N. J., August

H ?'0"22. 1969; revision received June 11, 1970.

- Associate Professor. Department of Aeronautics and Astro-
fautics. Associate Fellow AIAA.

',:'_*? NASA Fellow: now Associate Engineer, Lockheed Missiles

& Bpace Company, Sunnyvale, Calif.

7% 3

Multiple Swing-By Orbits

All the results in this report are based on patched conic
analysis.!* The interplanctary trajectory is completely
defined by the dates at each planet.  Assume that only the
initial and finul dutes of & multiple fiyby are given. Then
the number of dates to be selected is equal to the number of
swingbys. For the case of a double swingby, all the possible
combinations of dates are represented by the points on a plane.
The locus of dates that produce equal magnitude inbound and
outbound hyperbolic velocity at one planet is a line in the
plane. The locus of dates that produce equal magnitude in-
bound and outbound hyperbolic velocity at the other planet
is another line in the plane. The intersection of the two lines
represents & pair of dates that sutisfies the first necessary
condition for a multiple swingby. Figure 1 shows these loci
for a double swingby of Venus and Mars. This example has
six intersections. The problem of finding the intersections
is equivalent to finding the zeros of a function defined us the
sum of the squares of the differences in relative velocity
magnitudes at the two flybys. .\t each intersection the
value of the function vanishes and thereby uchicves u vlobal
minimum. The function represents a surface in three dimen-
sions. The value of the function determines the height of the
surface sbove the date-at-Mars=late-ut-Venus plane. Con-
tours are sketched around one of the better behaved inter-
sections. A study of Fig. 1 shows how complex the surface
can be even with only two swing-by dates to consider. Suc-
cessful solution by iterative methods is contingent upon the
initial approximation of the independent variables. .\ poor
initial choice may cause the iterative procedure to find a local
minimum rather than the desired solution. [t is also possible
for the search process to hog down in a ravine of the suriace.
Since the problem is compounded for higher-dimensional
spaces, the need for & good initial guess is apparent.

The feasibility of a swing-by orhit also rests on each planet’s
capability to turn the inbound relative velocity into the out-
bound relative velacity on a hyperbolic path that does not
pass below the planet surface. If this is possible, the duates
of the planet encounters and corresponding planet locations
are the solution to the problem. In this report all flvhvs
occurring bevond 1.1 planet radii are considered acceptable.
Not all the intersections in Fig. 1 satisfv the second condition.
Each point needs to be found and then tested to ascertain that
the hyperbolic path does not go below the surface.

Direct Returm Orbits

A direct return orbit is a sun-centered ellipse that returns
a spacecraft to the same planet from which it was launched
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Fig. 1 Flyby dates for double swingby.

without interruption by encounters with other planets.
These orbits find useful application when the elliptical tra-
jectory between the planets results in large excess hyperbolic
velocities. Large excess hyperbolic velocities reduce the
maximum allowable turn angle at a given planet and hence the
chances for making acceptable flvbys above the planet's
surface. Large values of the excess hyperholic velocity can
often be reduced by delaving the interplanetary flight with
_ direct returns until the relative planet positions permit inter-
planetary transters with lower excess hyperbolic velocities.
The long delay is unfortunate, however. the planet and space-
craft remain relatively close to one another during this period.
which mayv be of practical use in the ultimate mission. Two
commonly used direct return orbits are the “‘full-revolution
return’’ and the “svmmetric return.”

A full-revolution return is a sun-centered elliptical orbit
which returns the spacecraft to the launch planet in one
launch planet period. Because the spacecraft and plunet
have equal periods, they must have equal velocity magnitudes
relative to the sun. A double infinity of such orbits exists
at euach encountered planet. When the magnitude of the
excess hyperbolic velocity is small with respect to the launch
planet’s orbital velocity. the two velocities will be nearly
perpendicular. Furthermore. the orbital plane of the full-
revolution return will be ouly slightly inclined to the plane of
the launch planet’s orbit. A “half-revolution return™ is u

ARRIVAL

Launch Planet Oroait
—— == Spacecraft Or3a1zt

Fig. 2 Syvmmetric return orbit.

‘strained to occur one launch planet period after the first, only
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special case of the full-revolution return in which the space.
craft has both the same period and eccentricity as the launch
planet’s orbit. In these cases the relative velocity vector jg
nearly perpendicular to the plane of the launch planet’s orbjt
and the spacecraft returns to the launch planet after a hajs
revolution of the sun.

A svmmetric return is a sun-centered elliptical orbit which
is coplanar with the launch plunet's orbit and returns the
spacecraft to the launch planet after a time greater than one
launch planet period.* In the construction 6f periodic orbits,
the symmetric returns of most interest are those with times
of flight greater than one. but less than two. launch planet
periods.” An example of a symmetric return is shown in Fig,
2. In this diagram the spacecraft and planet each pasy
through the arrival point (independently) and complete gne
circuit on their respective trajectories before the encounter
is made. For a symmetric return orbit, the launch and
arrival relative velocity magnitudes will be equal when the
launch planet is in circular orbit. )

Iterative Solutions Cs

Swing-by orbits are obtained by adjusting approximate -
dates of the planet fybys until differences in the relative
velocity magnitudes at each flyby simultaneously vanish..
Since the second flvby of a full-revolution return is con

one fly-by date is an independent variable. Similarly, only
one date can be considered independent for direct return orbits.
consisting of two or more consecutive full-revolution returns’
In any event the number of independent dates N equals the,
total number of interplanetary transfers and symmetric NI
turns in a periodic orbit. ¥
Successful solution by iterative methods is contingent:
upon the initial approximation of the independent variables;
Approximate solutions to periodic orbits are not easily ob—
tained. Hollister® has discovered three periodic orbits that?
connect Earth and Venus. In the circular coplanar case each:;
orbit includes a direct return orbit at Earth, an interplane
tary transier to Venus, two direct return orbits at Venus:*
and an interplanetary transfer back to Earth. The durationz
of each orbit is 3.2 yr;: they differ in the type of direct return-
orbits occurring at Earth and Venus. The first orbit hasc
a full-revolution return at Earth and two consecutive full=,
revolution returns at Venus. The second orbit consists of &

£

Table 1 Key to orbit descriptions®

Periodic Direct return Direct return
orbit orbits orbits
number at Earth at Venus’
1 and 1H 3FR 5TFR
2 and 2H S5FR JFRSY
3 and 3H 38Y 53TFR
4 2FR. 5Y, 2F1t 5TFR
3 FR, 25Y. 2FR 53TFR
6 2FR, 28Y, FR ATFR
7 FR, 33Y, FR STFR
3 FR, 43Y STFR
9 5FR 2TFR, FRSY, 2TFR
10 3FR 2TFR, 2FRSY, TFR
11 53FR FRSY, TFR, 2FRSY, TF
12 5FR FRSY, TFR, JFRSY
13 2FR, 3Y, 2FIk FRSY, 4TFR
14 2FR, Y, 2FR FRSY, 2TFR, FRSY, TF
15 IFR, 3Y, FR, 5Y FRSY, ?TFR, FRSY, TF

*“FR = [ull-revolution retura: 3Y = symmetnc return: FRSY = ‘,
revolution return followed by & symmetnc return; TFR = two consecuti™
full-revolution returns. Direct return orbits are listed in the order the®
occur.
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3 Table 2 Flyby dates, (Julian date

A= — 2440000) orbits 1H-3H
Orbit Orbit  Orbit
Planet 1H 2H  3H
. E 441 417 352
e E 806 782 852
? A4 971 914 970
e v 1196 1139 1195
- v 1421 1470 1420
E 1592 1612 1542
7 E 1957 1977 2042
g v 2125 2086 2142
£ v 2350 2311 2367
= v 2575 2642 2392
& E 2797 2763 2697
7 E 3163 3128 3197
5 v 3316 4253 3207
J v 3541 3478 3522
: Vv 3765 4809 3747
. E 3935 4927 38533
E 4300 4293 4353
\' 4471 1427 H77
\' 4696 4642 4702
v 4921 4933 4927
I H077 2107 H38
- | ) 42 M2 4538
Vv 2664 2591 5044
* v 5889 5816 3869
v 6114 6149 6094
¥ E 6285 6261 6196
Ilepeating after 16 years
full-revolution return at Earth and a full-revolution and
symmetric return at Venus. In the third orbit are a sym-
metric return at Earth and two full-revolution returns at
Venus.
For the inclined elliptic case, Earth and Venus repeat their
absolute orientation to within several degrees nccuracy every
16 vr.¥  The error made by assuming exact periodicity of
the solur svstem i1s of the same order of magnitude as the
error made by the putched conic model. By using five cir-
cular copluanar orbits in succession (see Table 1) ax an initial
approximation. Hollister found solutions for each of the three
periodic orbits in the inclined elliptic case. To simplify
analysix. the duration of symmetric returns was assumed
constant and the launch and arrival relative velocity (V,)
magnitudes on the svmmetric returns were assumed equal.
The duration of the symmetric returns was chosen in accor-
dance with expected values for the semimajor axes of the svm-
metric return orbits.  The solutions for these three orbits are
reproduced in Table 2 where theyv are denoted as orbits 1H,
2H, and 3H. respectively. Since orbit 1H contains no sym-
metric returns. the solution for this orbit is rizorous in the
patched conic sense. Dates of planet flybys i orbits 2I1
and 3H are used herein us initial approximations for a solution
that eliminates the assumptions of constant time of flight
and equal relative velocity magnitudes on symmetric returns.
The function to be minimized can be considered an N
dimensional surface whose arguments are the dates of the NV
planet fivbyx.  The gradient of the function is an ¥ dimen-
sional vector in the direction of the greatest rate of change
of the function value. In steepest-descent iterations. dates
of the N flvbvs are incremented to correspond with movement
along the gradient vector. Reduction of the function value
is guaranteed for sufficiently small date increments. TFol-
lowing reduction of the function value, a new gradient vector
- is caleulated and the iteration repeated.
28
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In Newton-Raphson iterations the difference in the veloc-
ity magnitudes at each of the N fivbys isexpanded in a Tavlor
series about the current values of the N fly-by dates. Only
first-order terms are retained in each Taylor series. Date
increments are made to cause each of the linearized expres-
sions for velocity difference to simultaneously vanish. Upon
reduction of the function value, velocity differences are ex-
panded in Taylor series about the new fly-by dates and the
iteration repeated. Convergence is likely only when the
initial date approximations are sufficiently accurate and
higher derivatives of the velocity difference expressions are
excessively large.

In both the steepest-descent and Newton-Raphson itera-
tions, the first partial derivatives of the difficrences in velocity
magnitude are required with respect to the fly-by dates.
Approximate values of the partial derivatives are obtained
by calculating the change in velocity difference at each fiyby
which results from making small changes in the N fly by
datesoneat a time.

~ First attempts at obtaining rigorous solutions to the peri-
odic orbit problem employed both steepest-descent and New-
ton-Raphson procedures. Steepest<lescent methods were
first used to reduce the sum of the absolute differences in
relative velocity (V,) magnitudes to 0.1 EMOS (Earth Mean
Orbital Speed Unit). Newton-Raphson methods were then
used to reduce the value from 0.1 EMOS to assumed con-
vergence at 0.005 EMOS. Sometimes oscillations in the date
increments indicated that a ‘ravine” problem had been
encountered on the N dimensional surface. The Davidon'
and conjugate gradient'* methods were employed when this
situation developed.
- Attempts to obtain a solution to Hollister’s third periodic
orbit resulted in convergence to a local minimum rather than
a solution. [Endeavors were mude to sequentially modify
orbit 1H until an accurate approximation for orbit 3H could
be obtained. E

Although orbit 1H and 3H have the saume type of direct re-
turn orbits at Venus, orbit 1H has five full-revolution re-
turns at Earth and orbit 3H has five symmetric returns at
Earth. - A solution was first attempted for orbit 1H modified
to include one symmetric return and four full-revolution re-
turns at the Larth encounters. An approximate solution for
this orbit was obtained by merely replacing one of the full-
revolution returns at Earth in orbit 11 by 2 symmetrie return
of 1.37 yr duration. The symmetric return was inserted so
as to equate the times of flight for the interplunetary transiers
on either side of the Earth encounter. Rapid convergence to
the orbit solution was achieved with the steepest-descent and
Newton-Raphson procedures. Following this favorable out-
come, the modified orbit was altered by replacing one of the
remaining full-revolution- returns by a second symmetric
return. - A\ solution was easily obtained in this case and also
for orbits with three, four, and finally five symmetric returns
at the Earth encounters. Solutions for each of these orbits
are listed in Tuable 3 (orbits 3-8). Lor orbits 4, 7, and b,
convergence was rapid and predictable. In orbits 5 and 6
oscillation was encountered and convergence slowed at low
levels of the function value. In these caxes the conjugate
gradient method was used to further reduce the function
value.

Although a solution for each of the modified erbits was re-
quired to obtain a rigorous solution to orbit 3H, the modified
orbits are more than a means to an end. Euch is a unique
periodic orbit with characteristics far different from similar
orbits. This fact is illustrated by a comparison of orbits
5 and 6. Although these orbits each have two symmetric
and three full-revolution returns at Earth. the order in which
the returns occur differs. In orbit 5 the minimum pass
distance occurs during a flvhy of Earth in which the space-
craft comes within 1.16 Earth radii of the planet suriace.
In orbit 6 the minimum pass distance also occurs during a flvby
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Table 3 Solutions for orbits 1-15
I'_‘A “i ‘ V“i “l ‘-"% e.l
Planet Dater EMOs deg FRaa Planet Date* EMOS deg Rama' Planet Dater EMOS  deg ot
Orbit 1 Orbit 2 Orbit 3
E #1 0.155  S81.1 1.59 E 415 0137 69.3 2.57 E 382 0.162 3883 2.78
E 06 0.155  H1.1 1.59 E %0 0.137 69.3 2.587 E 877 0.162 345 6.4
v 971 0179 61.3 1.77 v 14 0.231 209 1.9 v 1012 0.248 207 4.38
V1196 0.179 613 1.77 V1139 0.231 18.4 5.53 Vo237 0248 197 4.66
A 1421 0.179  61.3 1.7 v 1470 0.230 309 35.06 v 1462 0.2485 1.7 4.66
E 1391 0.154  81.7  1.57 E 1614  0.145 77.4 2.02 E 1540 0.165 28.7 7.92
E 1957 0.1 81.7  1.57 E 1979 0.145 7.4 2.2 E 204 0.164 1S.4 13.74
A\ 2125 0.206 3.6 3.30 v 2086 0.257 14.3  6.26 v 2149 0.136 0.1  4.36
Ay 2350 0.206 34.6  3.30 \Y 2311 0.257  14.3 6.26 v 2374 0,136 30.1  4.36
V2375 0206 34.6 3.30 V2643 0.238 6.9 13.92 Vo239 0.136 3.3 3.81
E 2795 0.193 423 3.36 E 2762 0.161 67.5 2.18 E 2697 0176 11.2 21.04
E 3163 0.193 425 3.36 E 3127 0.161 67.5 2.18 E 3190 0.176 43.6 3.56
Y 3316 0196 60.2 1.53 v 3252 0246 16,4 5.5 ¥ 33058 0204 2.7 1.31
Vv 3341 0.196 602 1.33 v 3477 0.246 8.7 11.80 v 3333 0.204 62.7 1.3
Vv 3766 0.196 60.2 1.33 A 38509 0.246 234 3.3 Ay 3758 0.204 e g 1.31
E 3035 0.138 S84.1 1.40 E 3927 0.146 S83.6 1.57 E 3885 0.215 v.l 1.23
E 4300 0.138 84.1 1.40 E 4293 0.146 R3.6 1.57 E 4374 0.216 26.7 5.06
A 4471 0.194 3592 1.61 ¥ 4426 0.245 2.9 4+ 4 Y 4485 0.158 57.2 257
v 4696 0.194 39.2 1.61 v 4651 0.243 209 4. 44 v 4710 0.158  57.2 257
A’ 021 0.194 592 1.61 \3 4983 0.245 12.6 8§.00 v 4935 0.138 37.2 2.57
E 5076 0.175 434 3.66 E 3108 0.143 66.9 2.81 E 53039 0.165 27.3 8.40
E M2 0175 454 3.66 E 73 0143 66.%  2.81 E 3333 0.165 10.7 25.12
b 3664 0.225 32,0 3.06 ¥ 3390  0.257 16.3  5.42 ¥ 3641 0. 144 7.9  2.26
v 3889 0.5 320 3.06 A2 71y 0.257 10.5 8.8V A 5866 O0O.144 67.9 2.26
v 6114 0225 320 3.06 v 6147 0.256 13.0 7.06 Vv 6091 0.144 67.9 2.26
- E 6285 0.155 81.1  1.39 E 6239 0.137 69.3 2.87 E 6226 0.162 58.8 2.78
Orbit 4 Orbit 5 Orbit 6
E 432 0133 76,8 2.45 E 442 0.133 80.3 2.21 E +44 0.125 355.0 2.18
E 98 0.133 76.3 2.45 E 808 0.133 80.3 2.1 E %309 0.125 S83.0 2.18
\% ke 0180 45.4 111 v 977 0.165 34.0 5.25 ¥ 995 0.187 41.7 3.06
v 1214 180 43 4 4.11 A% 1242 0.165 34.0 3.5 ¥ 1220 0.187 41.7 3.06
4 1450 0180 45.4  4.11 \ 1467 0.165 38.7 167 v 1445 0.187 41.7 3.06
E 1614 0.188 786 1.16 E 142 0.173° 43.9  35.96 E 1620 0.200 75.7 1.12
E 1980 0.188 786 1.16 E 2036 0.173 13.5 15.16 . E 1986 0.200 75.7 1.12
v 20535 0282 189 3.7 v 2147 0.136 52,0 4.06 v 2135 0.302 17.5 3.60
v 2358 0 0282 1535 5.4l v 2372 0.136 52.0 4.06 Vv 2585 0.302 11.4 3.85
b g 2375 0.232 199 3.58 \'4 2597 0.136 32,9 3.95 v 2810 0.302 18.0 3.48
E 2710 0.203 57.4 1.56 E 2698 0.171 13.2 18.71 E 2716 0.209 64.1 1.43
E 3200 0202 335 3.94 E 3192 0171 37.7  5.03 E 3206 0.209 11.4 14.62
v SB13 0208 509 3.9 A 3507 0.186 32,9 4.30 v 3209 0.150 62.8 2.43
v 3538 0.208  26.5 +.539 \ 3332 0.186 2.0 5.36 v 3324 0.150 62.8 2.43
v 3763 0.208 2.5 4.59 % 3757 0,186 29.4 4.00 v 3749 0.150 62.8 2.43
E 3920 0139 S86.5 1.28 E 3922 0.135 30.0 216 E 3870 0.186 48.0 2.98
E 424 0.13Y% S6.5 1.28 E 4287 0.135 800 216 E 4363 0.186 32.3 5.18
\Y H68 0.185 J7.4  1.36 v +H#474 0.148 4.4 2,07 v 474 0.134 549 3.87
v 4693 0185 S57.+4  1.36 v 4699  0.148 64.4 2,37 v 4699 0.134¢ 45.4 5.26
v 4915 0.1 37.4  1.86 v 1924 0.148 64.4 2.7 \'s 4924 0.134 45.4 5.26
E 74 0.163 469 4.03 E 3088 0.143 52.3  4.57 E 2093 0.133 56.6 4.41
E M0 0163 .9 408 E 3433 0143 532.0 4.57 E 538 0.133 36.6 4.41
v 630 0204 341 3.41 v 3662 0.188 35.6 3.7 v 5660 0.173 38.3 +4.02
' '1884 0.204 3541 35.41 A% 2877 0.188 35.6 3.78 A 3885 0.173 38.3 4.02
v 6100  0.204 341 5.41 v 6102 0.188 35.6 3.78 v 6110 0.173 38.3 4.02
E 627 0.135 76.3 2.4 E 6286 0.133 380.3 2.21 E 6288 0.125 S85.0 2.18

< Juliaa — 2440000: dates repeating aiter 16 yr tadd 3844 days).

L

= relauve velucity; # = urn sogie: Rejo = minimum distance 10 planet center. planet radii.
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Table 3 Continued
i R L V., e V.b a0
Planet Dater EMOS ~ deg  Rami® Planet Date* EMOS deg Raid Planet Date*r EMOS deg Runt
Orbit 7 Orbit 8 Orbit 9
E 432 0.135 79.2 2.21 E 43¢ 0.129 Sl1.1 2.30 E 430 0.133 61.2 3.86
E 817 0.135 79.2 2.21 E 819 0.129 81.1 2.30 E 795 0.133 61.2 3.86
v 1009 0.224 21.2  3.24 v 1008 0.218 21.3 5.34 v 973 0.148 60.6 2.65
14 1234 0.22¢ 1.3 99.11 v 1233 0.218 2.0 71.47 v 1198 0.148 60.6 2.65
v 1439 - 0.224 236 4.39 V1438 0.218 246 +4.60 v 1423 0.148 60.6 2.65
E 1330 0.164 26.5 8.90 E 1339 0.163 26.1 9.16 E 1602 0.142 62.5 3.27
E 203+ 0.163 18.6 13.82 E 2034 0.163 18.9 13.62 E 1967 0.142 62,5 3.27
v 2148 0.134 51.1  4.36 v 2149 0.136 49.8 1 42 v 2165 0.194 30.4 4.43
v 2373 0.134  31.1  4.36 v 2374 0.136 9.8 442 v 2390 0.194 30.4 4.43
\ 2508 0.134 5324 4.18 A 2599 0.136 3+.4 3.81 v “615 0.194 30.4 4.43
E 2700 0.164 14.3 18.53 E 2697 0.176 © 11.4 20.71 E 2785 0.146 859 1.35
E 3195 0.164 222 11.05 E 3190 0.176 43.6 3.36 E 3150 0.146 859 1.35
v 3209 0.148 38.4 2.34 v 3308  0.205 - 62.6 1.30 v 3254 0.277 11.7  6.S0
v 332¢ 0.148 38.4 2.34 v 3333 0.205 62.6 1.30 v 3479 0.277 109 7.31
v 3749 0.148 38.4 2.84 v 3738 0.205 62.6 1.30 \'s 3812 0.278 16.3 1.62
E 3870 0.185 47.2 3.09 E 3889 0.216. 67.3 1.22 E 3918 0.148 62.5 2.99
. E 4362 0.1S5 31.8 3.15 E 4374 0.216 26.4 5.11 E 4283 0.148 62.5 2.99
v 4473 0.131 356.3 3.83 v 4485 0.138 36.9 2.48 A% H67  0.133 57.1 2.75
1 \7 4698 0.131 - 51.4 4.47 v 4710 0.138 36.9 2.48 v 4692 0.133 37.1 2.75
g \7 4923 0.131 51.4 4.47 v 4935 0.138 36.9 2.48 v 4917 0.133 57.1 2.73
E 5100 0.128  60.2 1.27 E 5039 0.164 27.9 8.30 E 3082 0.135 76.8 2.38
i E 5465 0.128 60.2 4.27 E 3334 0.164 13.3 20.16 E 5447 0.135 76.8 2.38
v v 3664 0.175 38.3 3.95 A 3645 0.138 46.3 3.66 v 3622 0.194 33.2 3.92
- v 3889 0.175 38.3 3.95 v 4870 0.138 .46.3 3.66 v 3847 0.194 33.2 3.92
5 v 6114 0.173 38.3 3.95 v 6095 0.138 46.3 3.66 A 6072 0.194 33.2 3.92
-t E 6296 '0.135 79.2 2.21 E 6208 0.120 81.1 2.30 E 6274 0.133 61.2 3.86
. Orbit 10 Orbit 11 Orbit 12
- E 430 0.120 61.2 4.1l E 430 0.127 S0.9 2.36 E 417 0.138 69.3 2.81
E 795 0.120  61.2  4.11 E 795 0.127 50.9 2.36 E 782 0.138 69.5 2.81
< 73 0.148 60.4 2.66 v 915 0.248 17.6 35.31 v 914 0.237 19.9 5.03
v 1198 0.148 ©60.4 2.66 v 1140  0.248 17.6 5.3l v 1139 0.237 17.6 5.82
" v 1423 0.148 60.4 2.66 v 1471 0.247 23.1° 3.8 -V 1469 0.237 27.2 3.41
3 E 1602 0.142 62.7 3.23 E 1603 0.140 86.0 1.69 E 1605 0.138 835.0 1.79
E 1967 0.142 62.7 3.23 E 1968 0.140 S6.0 1.69 . E 1970 0.138 85.0 1.79
. v 2164 0192 305 1.48 v 2165 0.191 30.6 +.30 v 2165 0.188 31.1 4.36
= v 2380 0.192 305 4.48 \ 2390 0.191 30.6 4.50 v 2389 0.188 31.1 4.36
v 2614  0.192  30.53 4.48 v 2615 0.191 30.6  4.30 v 2614 0.188 31.1 4.36
_' & 2784 0.144 3356 1.62 E 27 0.144 85.8 1.61 E 2785 0.143 86.6 1.38
i ! 3149 0144 856 1.62 E 3149 0.144 85.8 1.61 E 3150 0.143 86.6 1.38
3 v 3255 0.270 125 6.67 v 3255 0.270 12.4 6.68 v 3255 0.273  12.1 6.74
{ A 3480 0.270 11.5 7.30 v 3480 0.270 11.6 T.18 v 3480 0.273 12.0 6.80
b v 3812 0.270 18.5 +.24 v 3813 0.270 18.3 4.30 v 3813 - 0.272 17.1 4.36
E 3926 0.151 $4.3 1.49 E 3925 0.151 S84.8 1.49 E 3923 0.151 86.0 1.45
E 291 0.151 $4.3  1.49 E 4291 - 0.151 84.8 1.49 E 4289 0.151 86.0 1.4
v #4220 0.239 185 4.60 v H422 0.239 18.6  4.33 v 4426 0.244 221 4.18
v 4647 0.239 18.5  4.60 v 647 0.239 18.6  4.35 v 4651 0.24¢ 22,1 4.18
\ 4980 0.239 13.6 6.33 v 979 0.238 13.6 6.35 v 4982 0.244 12,5 8.10
E 5086 0.127 §3.2 2.7 E 3086 0.127 S83.3 2.21 E 5108 0.143 66.8 2.82
£ 351 0127 s3.2 2.2 E 3451 0.127 833 2.21 E 3473 0.143 66.8 2.82
. 3624 0.188 34.0 4.05 v 3624  0.188 34.3  +.01 v 5591 0.235 16.5 5.42
3849 0.188 340 4.05 v 3840 0.188 34.3 4.0l v 3816 0.235 10.4 9.05
" 6074 0.188 310 4.05 \ 6074 0.188 34.3 4.0l v 6147 0.233 13.8 6.64
I 6274 0.129 61.2  4.11 S 6274 0.127 S0.9  2.36 E 6261 0.138 69.5 2.81

: Julian — 2440000: dactes repestuinz atter 16 vr -4 id 3844 davsi.
V- = reiauve veilocity: § = turn anegle; Raun = mimimum distaoce to planet center, pianet radii.
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Table 3 Concluded
V"A a* V L] a‘! I‘..l a8t 1':
Planet Date* EMOS deg R Plsnet Darte* E'\IOb deg ¥ Planet Date* EMOS deg Rauh -
Orbit 13 Orbit 14 Orbit 15 o
E 437 0.120 746 2.99 E +H3 0.122 8.5 2.76 E 45 0.121 36.5 223
E 302 0.124 746 299 E 808 0.122 778.5 2.7 E 813 0.121 3865 223
\Y 916  0.250 17.0 5.47 v 916 0.235 16.2 5.33 A% 917 0.261 15,4 5.62
v 1141  0.250 7.0 5.47 Y 1141  0.255 16.2 5.33 v 1142 0.261 15,4 5.62
v 1473 0.250 229 3.80 \'s 1473 0.255 21.3 4.01 v 1474 0.261 20.2 35.07
E 1607 0.146 39.4 3.40 ‘E 1605 0.146 60.8 4.25 E 1603 0.146 62.9 3.12 "
E 1972 0.146 39.4 3.40 E 1970 0.146 60.8 4.25 E 1968 0.146 62.0 3.12
v 2132 0.217 25,1 4.54 v 2130 0.213 25.6 4.36 A% 2130 - 0.211 2.0 .57
\' 257 0217 0 X5 5.19 v 2355 0.213 242 1.8Y A 255 0211 260 4.357 9«
v 2582 0.217  27.3  4.07 g 2580 0.213 28.6 3.96 \' 2580  0.211 2.5 3.87
E 2701 0.180 40.1  4.19 E 2699 0.183 36.7 454 E 2606 0.189 33.6 1.88
E 3194 0.178 36.4  1.59 E 3192 0.183 #4.0 3.33 E 3188 0.189 30.7 2.65
A% 3309 0.190 32.7 4.16 \'A 3310 0.212 283 +1.07 \' 3310 0.233 249 396 -
A" 3534 0.190 26.6 5.44 v 3333 0.212 21.5 35.73 v 3535 0.233 Ye.e@ 397 -
\' 3759 0.190 28.7 4.94 Vv 3760 0.212 25.5 4.66 v 3760 0.233 -23.0 4.35 7
E 3924 0.140 82.2 1.87 E 3921 0.154 51.8 3.86 E 391S 0.167 33.4 3.10 :
E 42890 0.140 82.2 1.87 E 4287 0.154 51.8 3.86 E 4284 0.167 33.4 3.10
v #4471 0.155 61.0 2.40 v 4423 0.253 20.3 4.32 A% 4417  0:281 16.2 4.38
\ 4696 0.155 61.0 2.40 v 4648 0.253 20.3 4.32 v 4642 0.281 16.2 4.38
v 4921 0.155 61.0 2.40 v 4980 0.252 13.9 +.74 v 4975  0.281 17.0 4.21
E 50é~l T 0144 32.1 4.39 E 5092 0.130 74.6 2.72 E 3042 0.153 280 7.39
E 3449 0.1 52,1 4.39 E 57 0.130 746 2.72 E 3335 0.173 9.5 26.13
v 5659 0.184 36.6 3.82 \' 5659 0.171 38.9 41.05 v 5644 0.154 48.7 3.533
v 5884 0.184 36.6 3.82 v 5884 0.171 38.9 4.05 v 5869 0.15¢4 48.7 3.53
v 6109 0.184 36.6 3.82 A% 6109 0.171 38.9 4.05 v 6094 0.15¢ 48.7 3.33
E -6281 . 0.124 746 2.9 E 6287 0.122 78.5 2.76 E 6291 0.121 86.5 pL2R <

@ Julian — 2440000: dates repest siter 16 yr (add 5844 days).
b 'y = relauve velocity: # = turn sngle:

of the Earth. In this case the spacecraft comes within 0.12
Earth radii of the planet surface. Thus despite similarity of
the orbits, each combination of direct return orbits requires
individual evaluation. Dertails of the turn angle (8) calcula-
tion are contained in Ref. 16.

The method of sequential modification was also used to
obtain solutions to a series of orbits which differ only in the
direct return orbits at the Venus encounters. These orbits
are numbered 9-12 in Table 3. Solutions to orbits 13-15
demonstrate the effectiveness of sequential modification for
periodic orbits with symmetric returns at both Earth and
Venus. In all orbits numbered 9-15 no additional conver-
gence problems were encountered.

Summary

Four types of iterative solutions were attempted in solving
the periodic orbit problem. The Davidon method was found
to be an inappropriate choice due to the excessive amount of
time required for each iteration. The steepest-descent
method proved to be extremely useful in obtaining initial
reduction of the function value resulting from the approxi-
mate fly-by dates. Since only calculation of the function
value and gradient vector are required, each steepest~lescent
interaction requires little time. When simplicitv of the
steepest-descent method slowed convergence at a “ravine.”
the conjugate gradient method was used successtully to obtain
additional reduction of the function value. For periodic
orbit problems. the conjugate gradient method is character-
ized by an appropriate tradeoff between the time required
tor each iteration and the :ophistication required for satis-
factory reduction of the function value. The Newton-Raph-

Rmia = minimum distance to planet center, planet radii.

son method was used with success only after a sufficiently
accurate approximation to the fly-by dates had been reached.
Although XNewton-Raphson iterations suffered from the -
time required to invert an V-order matrix, large reductions in-
the function value were obtained from each iteration.

An average of 1.2 min of computer time was required tos
reach a solution for each periodic orbit in which no local
minimums were encountered between the initial approxima
tion and the global minimum. Of the 1.2 min. approximatel
0.3 min were required for compilation whereas approximately
0.9 min were required for execution. The longest time re-
quired to obtain a solution was approximately 2.5 min (70
iterations) while the shortest time requlred was approximately
0.4 min (3 iterations).

The technique described herein is in no way restricted
to the solution of periodic orbit problems. A periodic or-
bit is merely a multiple-fly-by problem in which the first and
last flyby are constrained to occur at the same planet with
equal relative velocity magnitudes on dates separated by an
integral multiple of a specified time period. In a general
multiple-fly-by problem any one or all of these constrain
may be relaxed.

As specifically demonstrated by orbits 5 and 6. the order
in which direct return orbits occur drastically affects the
characteristies of each orbit. It is important to consider 3
approximating the total number of acceptuble periodic orbits
which connect Earth and Venus. Each orbit contains five
encounters at Earth and five encounters at Venus. At each
encounter either one of two direct return orbits is available
for selection. For this reason a minimum of 1024 acceptable
orbits mav exist. Although acceptable orbitz containing as
many as five symmetric returns have been ~hown 10 exi=t. the
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times of flight for interplanetary transfers on these orbits are
quite small. The inclusion of additional symmetric returns
would tend to further reduce the time available for interplane-
tary transfers. It is reasonable to assume that periodic orbits
with six or more symmetric returns would require flybys
passing below the surface of a planet. This assumption
reduces the total number of periodic orbits with acceptable
flybys to 648.

A larger number of periodic orbits are possible if additional
variations in the direct return orbits are considered. Those
Venus encounters with two consecutive full-revolution re-
turns could be replaced by encounters consisting of a half-
revolution return followed by a full-revolution return and a
second half-revolution return. This alternative would cause
rotation of the relative velocity vector at four rather than
three flvbvs. The additional ilyby might reduce the lurgest
turn angle enough to allow more desirable flvbys. Still

" more orbits could be obtained by reversing the order of the

full-revolution and symmetric returns which occur in sue-
cession at many of the Venus encounters. This variation

‘would change the direction of the inbound und outbound

relutive velocities at the full-revolution and symmetric re-
turns so that a reduction in the largest turn angle might
result. No variations of this tyvpe were required for the
orbits listed in the Appendix since the flybys at all such
Venus encounters occur well above the planet surface.

The periodic orbits require 16 vr to complete each evele,
Earth and Venus repeat their absolute orientation every 8 yvr.
Therefore, two spacecraft are required to tuke advantage of
all the opportunities for each periodic orbit. When one
spacecraft is leaving Earth for Venus, the other is upprouching
Earth from Venus. The alternate sets of flv-by dates can
be obtained by adding 8 yr to each set of flyv-by dates listed
in the Appendix. The 15 periodic orbits presented here
would allow 30 spacecraft to simultaneously make periodic
flights between Earth and Venus. The lurge number of tra-
jectory choices provides considerable flexibility in establish-
ing a particular mission.
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