REVIEW

Review

Studies in Mathematics and Mechanics, presented to Richard von Mises by Friends,
Colleagues and Pupils, and edited by Garrett Birkhoff, Gustav Kuerti and Gabor
Szegs. New York Academic Press, 1954. 353 pp. $9.00.

This tribute to the eminent work of Richard von Mises in applied mathematics and
mechanics takes the admirable form of a series of 42 articles, on branches of these

subjects in which he had worked, by “ friends, colleagues and pupils.” It is preceded’-

by a valuable bibliography of von Mises’s writings, and a brief but penetrating study by
Philipp Frank of the views and aims which governed the selection by von Mises-of a
wide variety of scientific, mathematical, philosophical and literary subject-matter for
investigation. Here are noticed briefly only four articles in the volume, which seem
to be those of most interest to aeronautical scientists.

Professor Temple contributes an article on his very important concept of “ weak
functions ” or * generalised functions,” which is treated further in J. London Math.
Soc. 28, 134 (1953) and Proc. Roy. Soc. 228, 175 (1955). In these ipvestigations he
gives a simple and rigorous foundation to the theory of delta functions, principal values
and finite parts of integrals, and the Fourier analysis of singular functions of all kinds.
Much of this work greatly simplifies the analysis in many well-known kinds of aero-
dynamical calculation.

A simple model of shear flow turbulence based on considering the motion from a
Lagrangian point of view and postulating certain resistances and rotations for fluid
elements depending on their difference of velocity from the mean and on the local mean
shear is put forward by Dr. J. M. Burgers.

The oscillating vortex wake behind an obstacle at Reynolds numbers of order 102
is studied by means of the Oseen approximation in a paper by Professor C. C. Lin.

Professor Howard Emmons derives a general correlation for experimental results
on natural convection, film condensation, film boiling and film melting, by re-analysing

the significance of the relevant Rayleigh and Reynolds numbers.
M. J. LIGHTHILL.

Errata

It is regretted that in the paper by L. E. Fraenkel On the Unsteady Motion of a
Slender Body through a Compressible Fluid published in the February 1955 issue of
The Aeronautical Quarterly (Vol. VI, p. 59), the printed impression of some of the pages

was very poor.
The most serious result of this was that the identity between equations (16) and
(17), page 65, which should read

:K,,(z):.-;iJ exp(»—u— :—u)%.
1]

apparently contained *“z" and not “z2 " in the expression on the right hand side.

In addition the letier « 4" should have appeared before the ** 6™ at the very end of

equations (76) and (77) on p. 80.
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gg&h;:::rtiy OTR; nficﬁzlt;oit:n :gaél;ew_g&ner:_il_problt;m of transferring a rocket
2 ith minimum fuel expendit i i

and the results obtained when application i e o e

i pplication is made to a number of i
problems of space navigation are described D Deuar
Bl e iy e escribed. The mathematical techniques
i : ployed in the calculation of i

trajectories are exemplified b g the problos oF Dbt
; y a method of solving the problem of obtaini

maximum range from a rocket missile over the garth‘s surfa(t:)et? I

1. Introduction

. dIn the §eventccnth and eighteenth centuries the problems of sea navigation
ed as a stimulus and a challenge to the scientists of those days and led to ma
enquiries of a r.nathemalical character being undertaken. The results of thes e
;Zrttllll;se:ii fthe smlll of :iht; whole terrain of mathematics that rich harvests were :O(S)z
red from a its fields. The problems of the space navigator are o
:iemggxuy anc:-,f although the ’m?t.hematical techniques avagilable for fs?)lizgr fl?;f;
nie brc powerful than the primitive methods used by these earlier investigators, it
o be expected that the conquest of space and the resulting large demand for
mf:thods of computing rocket trajectories will have an equally beneficial effect and
will be productive of many new mathematical ideas. =

There are three main problems of space navigation. Firstly, there is the
prf)blem of computing the most convenient trajectory to be follow;d by a s
shlP unc{crtaking a particular interplanetary journey. Among the variouﬁ ss;.)' al:;e
tra}ectorles' satisfying the conditions imposed by such factors as the maximunl;o m;toe
t}'irust available, the maximum allowable time for the journey, the minimur;
distance of approach to the sun, and so on, the most satisfactor;( trajectory will
clearly be that requiring the least expenditure of fuel. In the early stages, it v.)r(ill be
necessary to relax all conditions to the greatest degree possible in order ;o achieve
fuel economy,_whilc looking forward hopefully to the day when atomic -drives
becomt? a reality and the necessity for fuel economy becomes less pressing. In
such mrcumstapces. the calculation of trajectories of least fuel cxpcnditurc- will
hav? to be carried out under a variety of conditions imposed by such considerations
as time schedules and the safety of passengers. For example, it may be a require-
ment that certain orbits be avoided because of their passing through regions og high

_meteor or cosmic ray intensity.

. Based on a Section Lecture read before the Society on 27th January 1955
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The second main problem is that of computing the position and velocity of a
rocket in space from observations of celestial bodies and the subsequent derivation
of the elements of its orbit. This is a survey resection problem in three dimensions
and, although it is more complex than the corresponding two-dimensional one, the
existing apparatus of spherical trigonometry will be quite capable of providing a
solution. The directions of the various bodies of the solar system can be found by
observing them against the background of the fixed stars and then, knowing the

co-ordinates of these bodies, those of the rocket are easily derived. Thirdly, there -

is the problem of providing the future navigator with sets of tables, by the aid of
which he will be able to compute the appropriate manoeuvre necessary to bring his
ship back on to a pre-calculated track when a divergence has been observed.

Of these three problems, investigation of the first seems most likely to require
the development of new mathematical techniques and it is this problem which is
considered further in the next Section.

NoTATION
see equation (10)

a
A
b see equation (33)
¢ rocket exhaust velocity
d  see equation (34)
f(1) acceleration due to motor thrust at time ¢
F,, F, components of retardation due to air resistance and gravity
g  acceleration due to gravity
k  see equation (22)
I,, I,  direction cosines of direction of motor thrust
M  rocket mass
M,  value of M on launching
= xi(i=12)
P motor thrust
q.,» 9, rocket’s co-ordinates at *“ all-burnt ™
4. q, rocket’s velocity components at “ all-burnt ”
R range along the Equator
t  time after launching
T  value of r at “all-burnt”
X,, X, co-ordinates of the rocket at time ¢
X (1)  seeequation (37)
Yi 2t see equations (9)
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Fig. 1.

%i B defined after equation (11)
8 Kronecker deltas
¢  inclination of the rocket’s velocity to the horizontal
¢  inclination ofsthe rocket thrust to the horizontal
#  rate of consumption of propellant
T=M/p

2. Rocket Manoeuvres of Least Fuel Expenditure

Suppose a rocket is to be navigated between two terminals 4 and B, its velocity
a.t these points being specified. If the motion takes place in vacuo and the gravita-
tional field is of a general nature, it may be shown' that the trajectory of minimum
fuel expenditure comprises a number of null-thrust arcs along which the rocket falls
freely under gravity, impulsive thrusts from the motor being applied at the junctions
between these arcs to effect transfer from one to the next (Fig, 1).

If the motion takes place in the plane of rectangular axes Ox, Oy and the x
and y components of the gravitational attraction are —f, —g, respectively, two

components u, v, of a vector quantity called the primer are determined by means
of the equations

du  of  og

ar +u§._£ +‘U§; =(),
& of ag M
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Fig. 2.

The quantities u, v, vary with ¢ along any track of the type specified. The track
is optimal with respect to fuel expenditure if the quantities u, v are such that
u*+2? <1 at all points on the track and satisfy the following conditions at each

junction:—
(i) u, v are continuous and represent the direction cosines of the direction
of thrust,

(#) i, b are continuous,

(i) ‘uit+vv=0.

Corresponding results which take into account aerodynamic forces will be
found in Ref. 2.

Particular problems to which this general result may be applied are:—

(@) The basic manoeuvre of transferring a rocket from gne orbit about a
central attracting body into another not necessarily coplanar “{nh the first. The
time of transit, the point of departure and the point of arrival, may or may
not be specified.
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(9) (b)

Fig. 3.

The solution to the simplest case of this problem, namely, transfer between
coplanar circular orbits, was discovered by Hohmann in 1925®. Hohmann found
that minimum fuel expenditure is involved if transfer takes place along an elliptical
orbit tangential to both circular orbits (Fig. 2), impulsive thrusts being applied by
the motors at each point of contact, A and B, to effect transference into and out of
the connecting orbit. Although the requirement of impulsive thrusts cannot be
achieved in practice, there will usually be no difficulty in attaining a very close
approximation. If the two orbits are those of the Earth and Mars for example, it
may be calculated that the time which would be spent in the orbit of transfer would
be about 260 days, as compared with two periods of acceleration of a few minutes
each. However, account might have to be taken of the fact that the motor thrust
is limited if transfer between two orbits about the Earth is being considered, for
then the time of transfer will be comparable with the time of thrust, or if it is
proposed to use a micro-thrust motor employing a jet of ionised particles.

The present position in relation to the general problem is that the mode of
optimal transfer between any pair of coplanar elliptical orbits is known“:* but the
general three-dimensional manoeuvre remains to be treated.

(b) It seems probable that a space ship embarking upon an interplanetary
journey will depart from a circular orbit about the Earth and terminate its passage
by entering into another circular orbit about the target planet. The problem is
therefore presented of optimising these manoeuvres for a given pair of planets and
circular orbits about them. Again, the solution is available'® in the two-dimensional,
but not in the three-dimensional, case.

(c) The solution to the previous problem being known, there exists the sub-
sidiary problem of determining the most economical manoeuvre whereby a rocket
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may escape from a given circular orbit, arriving at infinity with the. v_elocif;y
necessary to set it into the orbit of transfer. Assqmlng th'a thrus% llnl-lmlFEd in
magnitude, there are two possibilities. If the velocity required a? mﬁn{ty is less
than a certain critical value, escape should be achieved by a single.lmpulswc thru§t
tangential to the circular orbit (Fig. 3a) causing the rocket to move into a hyperbolic
orbit. If, however, the velocity at infinity is to exceed this 'crmcal vall.?e, a more
complex manoeuvre saves fuel. An impulsive thrust opposing the motion is ﬁrst_
applied to set the rocket into an elliptical orbit approaching the‘ce'ntre of attraction
(Fig. 3b). At perigee a second impulsive thrust transfers the S‘hlp into a hyperbolic
orbit along which it proceeds to infinity. This manoeuvre, which was first proposed
by Oberth!™, becomes more economical the closer the approaf:h that can be made
to the centre of attraction. By reversing the order of events in th<?se manoeuvres,
economical entries into circular orbits may be made with any velocity of approach.
Full details will be found in Refs. 8 and 9.

If, however, the thrust is limited in magnitude, so that impulsive thrusts cal?not
be approximated, this problem does not admit of so simple a solution. Equations
are available from which the optimal trajectory may be deduced"®, but they can-
not be integrated analytically. Their numerical integration has not yet been
performed, but it appears that they require the_ thrust to be offset from the
direction of motion towards the centre of attraction.

This section is concluded by describing two other problems relating to optimal
rocket trajectories.

When a rocket is perturbed by a planetary body, a transfer of energy takes

place between it and the body which may be to the advantage of the rocket. Thus, -

by passing close to the Moon, a space ship outward bound fer an orbit abou? the
Earth to Mars can acquire a considerable amount of energy without any expenditure
of fuel. The best way of utilising such perturbation effects is not knc)\_:vn, although
there exist a few purely numerical studies, some of which will be found in Ref. 11.

Finally, there is the most urgent of all astronautical problems, tha? of caI.culating
the optimal trajectory from a ground launching station into a satellite or‘i:'ut about
the Earth. This problem is complicated by the existence of acrodynztmlc forces
and by the necessity for making allowance for tl}e limited thrust which can be
provided by the rocket motors. The work of Tsien ar‘ld Evanf,““’ represents an
advance along the path leading towards a complete solution to this problem. jI‘hcy
have calculated the mode of programming the fuel expenditure of a vertically
ascending rocket necessary to achieve maximum height. _’I‘he motor thrust was
assumed unrestricted in magnitude. Clearly a compromise h&'ls to be effected
between a rapid rate of fuel expenditure, leading to high velocitl‘es in the low'cr levels
of the atmosphere and hence to a fuel wastage due to the excessive wprk whnch. must
be done against air resistance, and a slow rate of fu_el expefldature, whl_cl? is
uneconomical for other reasons. Tsien and Evans’s solution requires that an initial
impulsive thrust is to be followed by a period of variable finite thrust, at the epd
of which the motor is to be shut down and the vehicle is then to coast to a standstill.
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They proposed that the initial impulse should be provided by a booster which
would fall away shortly after the rocket left its launching tower. If ¢ is the jet
velocity, assuming only that the air resistance is proportional to the square of
the velocity (i.e. both this force and gravity may vary in any manner with the
height), optimal programming has been achieved if the speed of the rocket during
the phases when the motor is operating is Ac, where

A A= rocket weight
air resistance at jet speed ’

@

The booster is supposed to accelerate the rocket initially to a speed in conformity
with this equation. A small rocket can be programmed to move in the manner
required by this equation, but since the rocket weight increases as the cube of the
linear dimensions, whereas the air resistance only increases as the square, the value
of A determined by equation (2) increases with the rocket size and there proves to be
no possibility of a really large rocket following this optimal schedule. It is suggested
that fo reach maximum height with such a rocket, as close an approximation as
possible should be made to the optimal solution, by first boosting to the maximum
degree possible and thereafter operating at maximum thrust. For the similar three-
dimensional problem of placing a large rocket in a satellite orbit, it is to be expected
that the optimal solution will require a thrust beyond that attainable. Taking into
account the limited thrust available, optimal conditions will be best approached by
first boosting to the maximum degree possible and thereafter operating at maximum
thrust. When just sufficient momentum has been acquired to carry the vehicle to
the level of the orbit, the motors should be shut down. The rocket then coasts
to the orbit and a final short burst from the motors will be necessary to effect
transfer from the elliptical coasting orbit into the satellite orbit. The problem then
remains of programming the direction of thrust during the first phase to achieve
maximum fuel economy. Equations are available, from which, by numerical
integration the solution to this problem may be found"®.

3. Programming for Maximum Range of a Rocket Missile

To illustrate the kind of mathematical techniques which are usefully employed
when considering the type of problem described at the end of Section 2, a
method is described of calculating the trajectory of a rocket missile so that it will
achieve its maximum range over the Earth’s surface.

Theoretically, optimisation should be carried out with respect to both the
magnitude of the motor thrust and its direction. However, for a large long-range
rocket weapon, the optimal magnitude of thrust proves to be impracticably large for
reasons which have already been mentioned and it will therefore be assumed that
when the motor is operating, it is always developing its maximum thrust. It remains
to achieve optimal conditions with respect to the direction of thrust. It is also
assumed that the period of motion divides into two phases. During the first phase,
the motor operates at full power and drives the missile towards the vertex of its
trajectory. The motion during the second phase is one of free fall under gravity
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e — O

Fig. 4.

alone until the atmosphere is re-entered, when the missile may follow a ballistic
trajectory under the additional force of air resistance or further extend its range by
gliding towards its point of impact.

For simplicity, consider the two-dimensional problem of a missile launched
from a point on the Equator and moving in the plane of this great circle. Let
Ox,, Ox, (Fig. 4) be rectangular axes through the Earth’s centre, rotating with it
and lying in the Equatorial plane and let (x,, x,) be the co-ordinates of the rocket at

time 7. If c is the jet velocity and M is the rocket’s mass at any instant, the accelera- -

tion due to the motor thrust is —cdM /(M dr). Since the fuel consumption pro-
gramme is to be assumed fixed, this acceleration will be a known function of ¢,
say f(f). If (/,, 1,) are the direction cosines of the direction of thrust during the first
phase, the equations of motion of the rocket are

X+F=fl, (i=1, 2) . ‘ . . 3

where (—F,, —F,) are the components of the missile’s acceleration due to the air
resistance, the gravitational attraction and the centrifugal and Coriolis forces
associated with the rotating frame of reference. If it is assumed that there is no
alteration in the settings of any aerodynamic control surfaces and that the orientatio
of the rocket relative to the direction of motion remains invariant during the time
that air resistance is operative, it is permissible to write

Fi=F(x, X5 X.%., M, 1), ; : : : (C))]
explicitly.

Suppose that the functions /;(f) determine the thrust direction programme
resulting in the achievement of maximum range. Then equations (3) can be solved
for x;=x; (#), specifying the optimal trajectory. At ¢#=0 the rocket is launched from
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L (Fig. 4) and x,, %, take given values. Suppose that the motor operates until t=T,
“all-burnt ™ occurring at 4. Let A be the point (g,, ¢,) and let (4,, g,) be the
velocity components at this point. From A to the point of impact 7, the rocket falls
under gravity. The position of 7 is completely determined by the design of the
missile, the position of 4 and the missile’s velocity at this point. Thus the range R
along the Equator from the position of L to the point I is an explicit function of
the variables g, ¢,

ie. R=R (g, 9 41 q,). . . . . (5)

'I:his 'wiH be a known function of g, g, for any particular missile. The thrust
direction programme must now be selected so that qi. g take values which
maximise R.

Consider a small variation in the thrust direction programme in which the
functions /; are replaced by L+38l. Since I,*+1,2=1, the 8l are related by
the equation

I{S’(=0, . . . . . . (6)

but are otherwise arbitrary (the repeated index summation convention is being used
in equation (6) as elsewhere in the argument). Taking the first variation of the
equations of motion (3), we obtain

dx;=f81. . ; , . )]

cor s OFf . oF;
%+ a.i‘} 3x;+3}-’—

Since_the launching point and the missile’s initial velocity are not subject to
variation, 8x,=3%,=0 at r=0. Equations (7) accordingly fix the functions 8x, in
terms of the &/; and hence the varied trajectory.

Putting 8%,=38p,, equations (7) are replaced by the first order system

o,
o,

Kl
Spiv S hy,

Y
Pt Bx;

@®
8x;—3p=0.

Solving these equations by the method of the variation of parameters¥, leads to
consideration of the system of equations

. OF, oF,
Zi+ aj, Zi+ a’:y.f“—ot (9)
j’l_'zf::{]s

for the four functions y, z (i=1, 2). Let

Ye=Yau (@), z=za(t) (i=1, 2; k=1, 2, 3, 4)

represent a linearly independent set of solutions of the equations (9).
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Also, let A be the determinant of the fourth order given by

A= FAT Zyo Zya Zy4
Tnoy Zag 223 Za4 10
Yu Yiz Yis Yia ( )

Yar Y2z Yz Yau |-

Then equations (8) can be integrated over the time interval (0, T) into the forms

T
Bt Dyl j%a,;ﬁﬂd!‘,

0

T

3p.(D)=34,= | Lp.dlar,

a1

where ., . are the determinants formed from A4 by replacement of its i row by
the elements

Yo (T)y Yoz (1) yes (), yra (1),
and 2adT% 2Tk Tallx Ll
respectively.
The variation in the thrust direction programme results in a variation in R

(equation (5)) of

0 dR
SR= i3 dg.+ a dq,

B
i b a gﬂ)sz dt, (12)

after using equations (11).

If the original value of R was a maximum, R =0 for all functions 3/; satisfying
equation (6). This will be so if

b= (G ot 50-6n)

This equation determines the optimum thrust direction programme.

(R 5o P NGE)

Integration of equations (3) and (13), determining the optimal trajectory, will
have to be performed numerically. The presence in equation (13) of quantities
which have to be evaluated at t=T necessitates performing this integration in a
sense opposite to that in which the rocket describes its trajectory. The conditions
existing at “all-burnt” will have to be chosen more or less arbitrarily in the first
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instance and, after integration back to the launching point L, adjusted until the
conditions at L are in agreement with those specified. The computing problem is
clearly one in which it will be necessary to acquire the services of an electronic
computor. If, however, the problem is simplified by neglecting air resistance, the
curvature and rotation of the Earth and variations in gravity with height, an
analytical solution is easy to obtain. Such a solution can be used to assess the
increase in range to be expected when any thrust direction programme is modified
to follow an optimum schedule. This case is considered in the next section.

4. Maximum Range over an Airless Flat Earth

In this case it is convenient to take the origin O at the point of projection and
the axes Ox,, Ox, horizontally and vertically respectively. The missile follows a
parabolic track from A to the point of impact I where its trajectory intersects Okx,.
It will be found that equation (5) now takes the form

R=a,+ & (4,4 V(3.2 + 200, (14)
g being the constant acceleration due to gravity.
The equations of motion (3) can be written
Xio=hLf, X,+g=Lf, (15)
from which it follows that the equations (9) are in this case
2i=0, yi=z. (16)

Let yu (), zu(#) be a set of solutions of these equations satisfying the initial
conditions

Zik (0)23”:- Vix (0)=8i+2.k' (17)

8 being zero unless the two subscripts are identical, when its value is unity. This
set of solutions is fundamental and from it the determinant 4 can be constructed in
the form

A=]1 0 0 0
0 1 0 0
t 0 1 of as)
0 t 0 1
It now follows that
I. n=T- a,,=0,
a,, =0, agg_—'T—t,
Bll_l 1812: 0, (19)
1321 = Bzz= i
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Substituting from equations (14) and (19) into equation (13), it %s found that
the optimum thrust direction programme is determined by the equation

1 .
%‘- =+ V(4. +289,),
2 q,
; B g, +2gq,
bt fi= «/[él’+é,’+2gqj’

: (20)
= I :
V(G a5 +2890)

It will be observed that the thrust direction is independent of the time .

First consider the case when the acceleration f due to the motor th.rust
is constant during the first phase of the motion. Assuming that initially
X, =X,=X,=x,=0, equations (15) may be integrated to yield

Xi=Lit, x;=1-g)t.
x,=3Lf0, x,=30f-90¢ . . . . @D
I, and I, being given by the equations (20). When t=T, x,=q,s X2=q2 X,=0,.

%,=4,, thus providing four equations for the determination of tht? values of g,, q,,
G - Tt will be found that, if k is the positive root of the equation

(k+DHk+ D+ K=(Flg, . . . . (22
- T
then q,=1gT*k} (k+ 1),
q.=3gT’k, ) ] ) . @3
gy =gTk* (k+ 1),
g,=gTk.

Equations (21), determining the trajectory while the motors are operating, may
now be shown to take the form

x,=3grPkt(k+ 1}, x,=3g%k. . . . . (29

These are parametric equations of a straight line through O and at an angle 6 to
the horizontal given by the equation

tan6=(1+%)_*. v w9

If ¢ is the angle made by the direction of the thrust with the horizontal, it may
also be proved that

Ty

f“(l'l'"il?)*' ... @
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It will be observed that as f—> 00, i.e. as the thrust becomes more powerful
and gunnery conditions are approached, k—> o0 and hence ¢ and ¢ both tend to
a limiting value of 45°, as might have been expected.

From equation (14), it is found that
Ruax=1gT?k! (k+ 1) [(k + 1)+ K. R T

Complete trajectories for the cases f/g=2, 3, 6, c0, have been drawn in Fig. 5.
For each trajectory T was selected so that the fuel consumption was the same
in all cases.

Equations (25) and (26) show that optimum conditions are achieved by deflect-
ing the direction of thrust from the direction of motion by an angle

cot [k (k+ Dtk R+ . . . . (@8)

in the upwards direction. It is of interest to discover the effectiveness of this device.
If the thrust magnitude programme is maintained unaltered, but the thrust direction
is supposed to be-always in the direction of motion, the equations of the trajectory
will be those given in Ref. 15. Assuming that the missile is initially stationary it
must first ascend vertically. However, there are a single infinity of possible
trajectories issuing from the launching point and, for comparison with the optimum
trajectory, we must select that which results in the greatest range being achieved. In
a particular case it was assumed that f=3g, g=32-2 ft./sec., T=50 sec. The
resulting maximum range, when the thrust was not deflected from the direction of
motion, proved to be 97 miles. The corresponding solution of equation (22) was
found to be k=1-271. Equation (27) then yielded R,.,=104 miles, an increment
of about 7 per cent. Smaller values of f/g result in a larger percentage improve-
ment in range, and larger values in a smaller improvement.

Attention is now directed to the problem of attaining maximum range with a
rocket whose thrust remains constant. Since the mass will diminish as fuel is
consumed, it follows that the acceleration f due to the motor will steadily increase.

August 1955 177



DEREK F. LAWDEN

If P denotes the thrust, M, the rocket’s initial mass and p the rate at which propellant
is consumed, 1 must be constant if P and the jet velocity do not vary, and hence
the component of the rocket’s acceleration due to P at time ¢ will be given by the
equation

¥ e B
M,—pt  7—t’

fO= (29)

where a=P/p, r=M,/pn. The equations of motion of the missile are accordingly.

il g dB
XN= Ti_{?' Xa= Ta—'t -8 . . . J (30

where, for maximum range, I,, I, are specified by equations (20).

We now proceed as before and calculate that

q,=3gT*Q2-b)pt(p—-b)h,

q.=4gT*[(2-b)p—1].
g1=<Tp* (p— )", ARl e
‘.?2=gT(p_I);

p being the positive root of the equation

Plpt+@-bl=a2, . . . . . (3
where b= ? — —2-~ 5 y 5 . . (33
T
log r—T
a
d= Efbgr T (34)

It now follows from equation (14) that

Rm,:%grzdﬂ(l—%)* p-t. . - 109

The equations of the trajectory during the period of operation of the motors are

= pi — hy
x,=pt(p b)X(r)-} (36)
x,=pX()-4gt,
whete X ()= *-Sz‘—m[r—(r—r)log:—ﬂr]. .3
logT_TT

e
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The angle of inclination of the thrust to the horizontal is given by the equation

tan¢:(1—%)'*. P A SE ™

The angle made by the direction of motion with the horizontal at time ¢ is given
by the equation

"'1"”5’=(“%)-i e e 9 )

This equation shows that the rocket must be launched at an angle 6, to the
horizontal, where

taneu=(1_%)_’[1—p%10gT:T. )

In the particular case of the V.2 rocket missile, P= 60,000 Ib. wt., M,=28,500 1b.,
=275 1b./sec. Hence a=7,028 ft./sec., 7=103'6 sec. Taking the duration of the
thrust to be T=70 sec., it is found that b=1-184, d=3-510. The positive root of

277 miles.

Substituting appropriate values for the parameters appearing in equations (38)
and (40), it is calculated that the angles made by the thrust and the initial direction
of motion with the horizontal are

$=49° 12", 6,=23° 23, : : . . (41

respectively. The portion of the trajectory from the launching point to “all-burnt”
has been drawn to scale in Fig. 6. Time, in 10 sec. intervals, has been marked off
along the curve.
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The maximum range of this weapon is usually stated to be about 220 miles.
The difference of 57 miles between this and the calculated figure will be accounted
for to some extent by the effect of atmospheric resistance which has been neglected
here. Against this must be set the effects of the Earth’s curvature and the reduction
in gravity with height. Both these factors will tend to increase the range. It is there-
fore difficult to assess with precision the improvement in range which would result
if the thrust direction programme of this rocket were converted to optimum. Kooy
and Uytenbogaart"® estimate that the effect of air resistance on the range does not
exceed 6 per cent. It accordingly seems reasonable to expect an improvement of
about 10 per cent, ie. of the same order as that found in the previous
numerical case.
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The Measurement of High Speed Air Velocity
and Temperature using Sound Wave
Photography

D. E. ELLIOTT, B.Sc.(Tech.)

(Liverpool University*)

SUMMARY : A transient sound wave is generated by discharging a spark in an
air stream, the velocity and temperature of which are required. After a time
interval of about 25 microseconds a shadowgraph photograph of the sound
wave is taken; a second photograph is obtained after a further known time
interval of the same order. The two exposures, both on the same negative,
show the propagation of the sound wave in the air stream and from this the
Mach number, the true velocity, the local velocity of sound, and hence the
temperature, can be calculated.

Using this method, measurements of Mach numbers of the order of
0-5 gave values between 98 per cent. and 100 per cent. of those calculated
from pressure measurements, Typical examples of the sound wave photo-
graphs are shown. With further development along the lines indicated in
the paper greater accuracy should be possible. The local speed of sound
Was measured to an estimated accuracy of + 15 per cent.

Since only a very short time interval is needed to obtain the photographs,
the method appears promising for investigating explosions of brief duration,
or dealing with flows of pulsating character.

1. Introduction

In high-speed gas-flow analysis the use of pitot and static tubes together with
shadowgraph, schlieren and interference photographs is well known. Of these
methods the shadowgraph and schlieren techniques are generally used to give
qualitative results, although some quantitative work is done. Unfortunately such
quantitative work not only involves a good deal of mathematical analysis, but
seldom gives accurate results. The interferometer is capable of determining the
change of density of the flow, but extremely sensitive and expensive apparatus, used
with great care, is needed and this technique is not generally used, except for dealing
with special problems. By far the greatest proportion of the quantitative work that
has been done has been based on pitot and static pressure readings.

From a knowledge of the pitot and static pressures at any point the Mach
number of the flow can be determined, provided that the ratio of the specific heats
is known: A further knowledge of the temperature at the point enables the true
speed to be calculated. In wind tunnel work, it is usual to assume that isentropic

Originally received February 1953,
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