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rom time to time I am asked

by people in the public sector

how they can calculate the
“energy gain” that occurs as a
result of a gravity assist flyby of a
massive body. Typically this type
of request originates with students
doing science projects or adults
looking for some spare-time fun.
These individuals are of course
ardent supporters of the space pro-
gram, and that being the case, it is
unfortunate and unsatisfactory to
have to respond with answers such
as “It's too complicated,” or ""You
can’t just use two-body formulae.”
Furthermore, the reference mate-
rial on this subject is quite techni-
cal, and therefore not appropriate
for an initial computational treat-
ment. Thus, for a long time, I have
wanted to derive a procedure to
perform the gravity assist calcula-
tion that could be used by such
individuals. This procedure would
begin with a minimum set of input
parameters and, presuming only a
high school or college freshman
mathematics background, would
allow computation of the desired
results to a reasonably accurate
level of approximation. My attempt
at such a procedure follows.

We will begin by solving the two-
body portion of the problem, i.e.,
the flyby body (e.g., a planet) and
the spacecraft. The results of this
portion can then be used to com-
pute changes with respect to the
other massive body (e.g., the sun).

hen a spacecraft has a flyby of
another planet, it is on a type
of trajectory or orbit known as a
hyperbola with respect to that
planet. Such a trajectory is shown

in Fig. 1. A hyperbola is a type of
conic section, i.e., if one took a
cone and passed a plane through it
in a certain manner, the points of
intersection would define a hyper-
bola. Planes can also be passed
through cones in such ways as to
generate intersections that are cir-
cles, ellipses, and parabolas,
though we are not concerned with
them here. The important point in
all this is that we will have to use
some terminology that applies to
conic sections in general and to the
hyperbola in particular. Also we
will make use of the equation that
describes such a curve in polar
coordinates, i.e., an angle and a
distance. This relation is stated as

p

"= T ecos] 0
where, at any point on the hyper-
bola, r is the distance from planet
to spacecraft and f specifies the
angle of this point on the trajectory
with respect to a particular refer-
ence direction. The angle fis called
the true anomaly and the reference
direction is the point on the hyper-
bola that is closest to the planet.
This point of closest approach is
called the periapse. Figure 1 de-
picts r and f.

The variables ¢ and p represent
other properties of a hyperbola
known respectively as the eccentric-
ity and the parameter. The parame-
ter, p, can itself be expressed as

p=al-é e

where 1 is known as the semi-major
axis of the hyperbola and is in fact
defined to be a negative number.
From Eq. (1) we can obtain the
spacecraft’s distance at any point.
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Fig. 1 Hyperbolic flyby around a planet.

We also need to be able to deter-
mine its speed. To obtain this we
have another relation

v=\ r—1/a (3)

where GM is a measure of the flyby
planet’s gravitational field, and is
actually the product of the gravita-
tional constant G and the planet’s
mass M.

With the preceding relations and
two quantities that characterize the
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spacecraft’s trajectory, we can solve
the two-body flyby problem. The
first input quantity is r,, the space-
craft’s distance at periapse, i.e., its
closest approach distance. The other
is known as v,. and is the speed with
which the spacecraft approaches the
planet when it is still a long way
out, i.e., at “infinity” for all practical
purposes.

With what we have now, we can
compute the quantities ¢, a, and p

that were previously defined. To
compute a, we use Eq. (3) at the
point where 7 is infinity for all prac-
tical purposes. At this point, the
term 2/r is equal to zero. Further-
more the spacecraft’s speed, v., is
given. Equation (3) becomes

. =\ —GM/a
which after rearrangement is
a =—-GMMm.? 4

To compute ¢ we use Eq. (1) at the
point wherer = r,,, i.e., the point of
closest approach. At this point, from
Fig. 1, we see that f = 0, and since
cos(0) = 1, Eq. (1) can be written at
this point as

t, = pl(l+e)

Then we use Eq. (2) to substitute for
p. Thus

- a(l—e)

after cancelling some common fac-
tors and solving for e, the equation
becomes

e =1-—(r/a)

and by using Eq. (4) for a, it be-
comes

g = 1 4 (I‘J,T-'E-"'IGNI} (5}

When we have solved for a and ¢ we
can find p directly from Eq. (2).

We still need to compute a few
other quantities before we can
step our way through the flyby.
One of these is known as f,, the
true anomaly the spacecraft has
when it has attained the point a
long way out that is approximated
by infinity. To obtain this quantity
we refer back to Eq. (1), but restate
it as

1 +ecosf=plr

Then, as the true anomaly goes to

f... the distance r also goes to infinity
and the right-hand side of this equa-
tion goes to zero. With this in mind
we can, after a little algebra, state it
as

f. = cos(—1le) (6)
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To obtain the next quantity of inter-
est, we can use Eq. (4) expressed as

v2 = -GMia

and substitute this into Eq. (3) ex-
pressed as

v=V2GMIN + 2 (7).

What we specifically seek is the
spacecraft’s speed at periapse, v,
which is obtained from Eq. (7) where
r=r,

We will use this speed to calculate
the spacecraft’s orbital angular mo-
mentum per unit mass, a quantity
that characterizes the rotation of the
vehicle’s trajectory, and that always
has the same value throughout the
flyby. This quantity, designated by
h, is defined as

h = rv sin(90 deg —)

or h = rvcos vy (8)
since sin(90 deg —+y) = cosy. Here vy
is known as the flight-path angle
and is shown in Fig. 1. This angle
just specifies the orientation of the
spacecraft’s speed with respect to a
direction that would be horizontal
at that point on the trajectory. Thus
v = 0 deg means the craft is in
horizontal flight; y = +90deg means
the vehicle is climbing vertically; val-
ues of y between 0 and +90 deg
refer to a climb that is in between
horizontal flight and vertical ascent.
Likewise y = —90 deg means the
vehicle is diving vertically; values
between —90 and 0 deg refer to a
descent that is in between vertical
descent and horizontal flight. The
approach, which characterizes the
first half of the flyby, is all descent,
i.e., the craft is getting closer to the
planet. Thus flight-path angles are
all negative here. The departure,
which characterizes the second half
of the flyby, is all ascent, i.e., the
craft is getting farther from the
planet. Thus flight-path angles are
all positive here. The change from
negative to positive value of y must
then be at the periapse point, and so
here we know that y = 0 deg.
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Because we know the value of y
at this one point, we can use it to
compute the quantity h. We use Eq.
(8) with the value of r,as given, and
v, as obtained from Eq. (7). Thus

h = rp,cosy
or

h = 70,

since cos(0) = 1. Now we have
values for all the basic quantities
that we need. We have v., r,, and
GM as inputs and the quantities a, e,
P f= ©,, and h are obtained from the
relevant equations just provided. We
can use these in the computations
that we need to step our way through
the flyby.

We will take our steps in incre-
ments of true anomaly, f, beginning
near f= —f,, increasing to f = 0 at
periapse and ending near f=f,.
Then, for each value of f, and using
e and p from above, we can compute
r from Eq. (1). With this we can use
Eq. (7), and values of GM and v.,
from above, to compute v at each
point.

Now we need to define a new
angle B, sometimes called the range
angle. This angle is shown in Fig. 1
and is given by the expression

B=fotf (10)
Since the flyby begins near f = —f,,
we see that at the start B is near
zero; the flyby ends near f = +f,
and so at the end B = 2f,. So this
angle is just an indicator of how far
we are through the flyby, ranging
from O to 2f...

Next we will need to compute the
flight-path angle at each point. We
use Eq. (8) and rearrange it to solve
it for vy

= const (9)

cosy = h/(rv)

where we have previously computed
h from Eq. (9). We must also utilize
the fact that points that have nega-
tive values of f will also have nega-
tive values of vy. Thus

vy = F cos}(hirv) (11)

where we use the minus or plus
sign, as appropriate.

Finally we compute at each point
the angle 8, which is also shown in
Fig. 1. This angle is a measure of
how much the spacecraft’s velocity
orientation has been rotated from its
starting direction toward its final
direction. With the quantities we
have, we can compute § at each
point from the relation

d = B—vy—90deg (12)
As an example of how the pre-
ceding computations are per-
formed, the Appendix illustrates
the Voyager 1 flyby of the planet
Jupiter, which occurred on March
5,1979. Note that as the true anom-
aly is varied from about —f,. (- 139
deg) to +f. (139 deg), the distance
to Jupiter decreases to its mini-
mum value, then increases sym-
metrically; likewise the speed be-
gins approximately at v,., reaches
its maximum value at closest ap-
proach, then drops back, again
symmetrically, to v... Thus Voyager
1 left Jupiter with the same speed,
relative to the planet, that it ap-
proached Jupiter. The range angle
starts near zero and ends with a
value of about 2f,, as expected.
The flight-path angle begins around
—90 deg, implying a dive toward
Jupiter, reaches horizontal flight at
closest approach (y =0 deg), and,
on departure, climbs symmetrically
to around +90 deg. Finally, the turn
angle, 9, is seen to start at zero and
end with a value of 98.6 deg.

We can check our calculations by
using a formula that will allow us to
directly compute the total turn an-

gle that is produced by a flyby. The
equation is

S1orAL =
2sin™{1/(1 + (r,p2GM)]}
Srorar = 2 sin” (l/e)
For the Voyager 1 Jupiter flyby,
this becomes
droraL = 2 sin’'(1/1.318978)
= 98.6 deg

which checks with our previous
results.
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Figure 2 depicts Voyager 1's speed
with respect to Jupiter. In this figure
it is evident that the speed reaches a
i3 maximum at periapse, but thereaf-
ter drops back to its original value
by the end of the flyby. Thus Jupiter
produced no net change in Voyager
1’s speed (or energy) with respect to
the planet itself. However, Jupiter
did cause Voyager's velocity orien-
tation to be rotated by 98.6 deg. It is
this fact that produces the well-
known gravity assist effect. To see
how this comes about we must now
look at the velocity of the central
body of the flyby, in this case Jupi-

SFEED
(km/sec)

I | 10 _ ter, with respect to the third body, in
4139 --100 50 0 +50 4100 +138 this case the sun.
TRUE ANOMALY, f (deg) Figure 3 shows the classic “vector

diagram” thatis often used to graph-
ically display the gravity assist ef-
fect. The solid vectors represent the
Fig. 2 Speed of Voyager 1 with respect to Jupiter during Jupiter flyby. magnitude and orientation of the
spacecraft’'s speed with respect to
the planet at the beginning and end
of the flyby, as well as at periapse.
We have just seen that the magni-
tudes at the beginning and end are
the same, i.e., equal to v, but that
the flyby has rotated the orienta-
tion. We only need to know two
other quantities. The firstis the speed

\\V (&t periapse) of the flyby body with respect to the
penaR third body, known here as V;, and J
N shown in Fig. 3 as a dotted vector.
| S The other is the orientation angle ¢
i v=v, LY that this vector makes with the space-

craft’'s v, at the beginning of the
flyby, also shown in the figure.

We wish to compute, at each point
in the flyby, the speed of the space-
craft with respect to the sun, known
\\V (at start) simply as V, from the information

(at periapse)

V=V

X we now have. Mathematically this
(e starl) e A is just the vector addition of the
5. spacecraft's speed with respect to
'\\ the flyby body at that point, and the
\\ speed of the flyby body with respect
—_——— to the sun. This vector sum is rep-
............... V resented by a dashed vector in Fig.
B

3, which forms one side of a triangle
that can be completed by using trig-
onometry. At any point in the flyby
we have the solid vector, which has
been previously computed as the

Fig. 3  Gravity assist vector diagram.
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quantity v. We can also assume that
the quantity Vj is constant during
the flyby, so that we also have this
value as an input. From Fig. 3, it is
evident that at any point in the flyby
the angle between the two triangle
sides that we know is just the sum
¢ + 8. Since we also have previ-
ously computed the value of & at
each point in the flyby, we also
know this sum. Thus, by knowing
two sides of a triangle and the angle
between them, we can solve for the
third side, using the well-known
law of cosines, which can be stated
in terms of our variables as

V=\1"+Vi—2v Vgos (b+93) (14)

The computation of V is added as
the final column in the Appendix.
We can also plot the resulting profile
of V as a function of true anomaly f.
This is done on Fig. 4, where it is
clear that the speed does not return
to its original value. In the case of
Voyager 1 at Jupiter, the initial speed
is 12.6 km/sec and the final speed
is 23.4 km/sec. This amounts to a
speed increase of 10.8 km/sec rela-
tive to the sun, and this represents
the gravity assist effect provided by
the planet Jupiter to the Voyager 1
spacecraft.

Similar computations can be done
for the Voyager 2 flybys of Jupiter,
Saturn, and Uranus. In order to
accomplish this the following data
are needed:

Voyager 2 Jupiter Flyby

r, = 721376 km V, = 12.69
v, = 7.6159 km/sec km/sec
GM = 126685919 km¥sec®> ¢ = 48.3 deg
Voyager 2 Saturn Flyby

r, = 160689 km Vy = 9.59

v, = 10.6731 km/sec km/sec
GM = 37929891 km¥sec* ¢ = 98.2 deg
Voyager 2 Uranus Flyby

r, = 107061 km Vy = 6.71

v, = 14,7321 km/sec km/sec
GM = 5793947 km¥sec® ¢ = 106.0 deg

In the process of doing these calcu-
lations, there exists one potential nu-
merical problem. At f=0, we ex-
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Fig. 4 Speed of Voyager 1 with respect to sun during Jupiter flyby.

pect that cos y = 1.0, so that y = 0.
However, depending on the number
of digits used, the expression h/(rv) =
cos y may slightly exceed 1.0, which
would not make sense. If this occurs,
fix its value at 1.0, so that cos v is
realisticand vy = 0.

When the computations are done
you should find that Voyager 2's
speed was increased by 10.1 km/sec
by the planet Jupiter, increased by
4.9 km/sec by the planet Saturn, and
increased by 1.9 km/sec by the planet
Uranus.

Figs. 5-8 depict the Voyager 1
Jupiter flyby and the Voyager 2 fly-
bys of Jupiter, Saturn, and Uranus.
Also shown superimposed on each
is the relevant gravity assist vector
diagram.

The procedure that has been de-
lineated herein is reasonably accu-
rate for flybys in which the plane
of the spacecraft’s trajectory is ap-
proximately the same as that of the
planets’ orbits around the sun,
which is known as the ecliptic
plane. This co-planar condition es-
sentially reduces the problem to

one in onlv two dimensions, thus
making it amenable to the solution
procedure. Flybys that do not meet
this condition have to be solved
with a full three-dimensional vec-
tor analysis, which is beyond the
scope of the current procedure.
These three-dimensional gravity as-
sists may or may not change a
spacecraft’s speed (energy), but
they will tend to alter the inclina-
tion or orientation of the space-
craft’s orbit. Planetary encounters
such as Voyager 1 at Saturn and
Voyager 2 at Neptune fall into this
more complex category and so are
not treated here.

Gravity assist is a fascinating sub-
ject with a long history of theoretical
and now practical development. The
concept was documented as early as
the 1920’s by the Russian scientist
and engineer Fridrikh Tsander. The
specific application of this technique
to a grand tour of the outer solar
system, i.e., the Voyager Mission,
was conceived contemporaneously
by Gary Flandro, Michael Minovitch,
and Brent Silver in the 1960’s.
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Fig. 5 Voyager 1 at Jupiter, March 5, 1979.

Fig. 6 Voyager 2 at Jupiter, July 9, 1979.
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Appendix: Voyager 1 Jupiter Flyby

r, = 348435 km V=
v. = 10.7692 km/sec b =
GM = 126685919 km?¥/sec?
2 5 cmifsecl
.= 126685919 km3/sec  _ 1092349 km
(10.7692 km/sec)?
(348435 km) (10.7692 km/sec)?
e =

126685919 km?/sec2
= 1.318978

p = (—1092349 km) [1 — (1.318978)?]
= 808014 km

f. = cos™' (- 1/1.318978) = 139.302 deg

[ 2(126685919 km¥/sec?)
‘U i = |
P 348435 km

+ (10.7692 km/sec)?

= 29.03699

h = (348435 km) (29.03699 km/sec) = 10117504 km*/sec
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f r | +I:. - r U= y %f?'l"_[ b, B |: f f y=Cos ! ;_E_ | d=B—y—-A" U= 1% ropl =20V, cosid 4 0)
(deg) (km) (km/sec) (deg) (deg (deg) (kmy/sec)
-139 177394255 10.8353 0.3 —-89.7 0 12.62
—-125 3318806 13.8679 14.3 ~77.3 L.6 14.45
- 100 1048060 18.9137 39.3 -58.3 8.6 19.38
-75 602377 23.1645 64.3 -43.5 17.8 24.79
—50 437279 26.3705 89.3 —-28.7 28.0 29.68
-25 368049 28.3618 114.3 -14.2 38.5 33.54
0 348435 29.0370 139.3 0 493 36.06
+25 368049 28.3618 164.3 +14.2 60.1 37.07
+ 50 437279 26.3705 189.3 +28.7 70.6 36.52
+75 602377 23,1645 214.3 +43.5 80.8 34.43 ;
+100 1048060 18.9137 239.3 +59.3 90.0 30.95 i
+125 3318806 13.8679 264.3 +77.3 97.0 26.32 ¢
+ 139 177394255 10.8353 278.3 +89.7 98.6 23.39
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