AUTHOR:

M. Minovich

August 28, 1961

TITLE:

The Determination of Miss Distances for Conic Trajectories

due to Velocity Errors

DISTRIBUTION: Section 312 Engineers, J. F. Scott, W. Scholey

In this paper we consider the effect of varying the velocity vector by a small amount $d\vec{V}$ of a free-fall vehicle moving on a conic trajectory under the influence of one body. In particular if \vec{R}_p , \vec{V}_p and \vec{R}_Q , \vec{V}_Q are the position and velocity vectors at two points P and Q on the vehicles trajectory we shall determine the distance of closest approach between the vehicle and the point Q if the velocity vector of the vehicle is changed by $d\vec{V}_p$ at the point P. The conic may be either elliptic or hyperbolic.

If the position and velocity of a free-fall vehicle moving in a known gravitational field are known at any time its trajectory is completely determined. Consequently if one desires a free-fall vehicle at any point P at time t_p to pass through a prescribed point Q at the time t_Q , one and only one velocity \vec{V}_p exists for the vehicle at P which will enable it to be at Q at the time t_Q . Now no matter how accurate a guidance system may be for the powered portion of flight there will always be some initial error when the vehicle begins its free-fall flight. Thus, if P is the initial point of free-fall flight to the target point Q its velocity will not be \vec{V}_p but $\vec{V}_p + d\vec{V}_p$ where $d\vec{V}_p$ is the amount the actual velocity at P differs from a velocity \vec{V}_p which would have taken the vehicle to the point Q. We shall assume that \sum is some orthogonal inertial frame with

origin at the center of the gravitating body such that $d\vec{v}_p$ can be expressed by three components $dv^1\ dv^2\ dv^3$ where

(1)
$$d\vec{v}_P = (dv_P^1 dv_P^2 dv_P^3)$$

It has been found very convenient to employ two important vectors \vec{c} and \vec{h} when conic trajectories are being studied. The vector \vec{c} is directed toward the vehicle's point of perihelion and has a magnitude equal to the conic's eccentricity. The vector \vec{h} is the vehicle's angular momentum about the center of the gravitating body. Taking the mass of the vehicle as unity the angular momentum vector is

(2)
$$\vec{h} = \vec{R} \times \vec{V}$$

where \vec{R} and \vec{V} are position and velocity vectors at any point on the vehicle's trajectory. By formulas (4) and (5) of T. M. No. 312-130 these vectors are related by

(3)
$$\vec{\epsilon} = \frac{1}{\mathcal{U}} \vec{v} \times \vec{h} - \hat{R}$$

(4)
$$\vec{V} = \frac{1}{\ell} \vec{h} \times (\hat{R} + \vec{\epsilon})$$

where $\hat{R} = \frac{\vec{R}}{R}$ and $\mathcal{L} = GM$, M being the mass of the body and G the gravitational constant. The semi-latus rectum \mathcal{L} of the conic trajectory is related to \vec{h} and \mathcal{L} by

$$(5) \quad \mathcal{L} = \frac{h^2}{\mu}$$

The magnitude of \vec{R} corresponding to \hat{R} can be calculated by

(6)
$$R = \frac{1}{1 + \hat{R} \cdot \vec{\epsilon}}$$

Now when \vec{V}_p is changed by an amount $d\vec{V}_p$ the vectors $\vec{\epsilon}$ and \vec{h} will change by $d\vec{\epsilon}$ and $d\vec{h}$ where, by employing (2) and (3)

(7)
$$d\vec{h} = \vec{R}_P \times d\vec{V}_P$$

(8)
$$d\vec{\epsilon} = \frac{1}{\mathcal{U}} (d\vec{v}_P \times \vec{h} + \vec{v}_P \times d\vec{h})$$

Let Q' be the point on the new trajectory which is closest to Q and $\vec{R}_{Q'}$, $\vec{V}_{Q'}$ its position vector and the vehicles velocity vector at Q'. If we denote $\vec{d} = \vec{Q'}\vec{Q}$ = vehicles miss vector, it follows that

(9)
$$\vec{v}_{Q'} \cdot \vec{d} = 0$$

This can be easily seen since at closest approach the vehicle is neither approaching nor reseding from Q. Consequently employing (4) and noting that $\overline{Q^1Q} = \overline{R}_Q - \overline{R}_{Q^1}$, (9) may be written as

$$(10) \frac{1}{\sqrt{+d\ell}} (\vec{h} + d\vec{h}) x (\hat{R}_{Q^{\dagger}} + \vec{\epsilon} + d\vec{\epsilon}) \cdot (\vec{R}_{Q} - \vec{R}_{Q^{\dagger}}) = 0$$

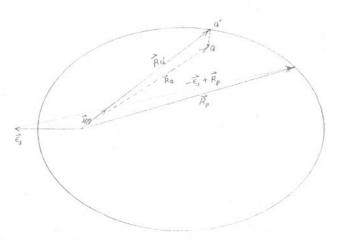
Since \overrightarrow{R}_{Q} , is a point on the new trajectory

(11)
$$(\vec{h} + d\vec{h}) \cdot \vec{R}_{Q'} = 0$$

There will be two solutions of (10) satisfying (11) corresponding to the point of closest approach \vec{R}_{Q} , and another vector corresponding to the farthest point from Q since at this point the vehicle also neither approaches nor recedes from Q. These two solutions can be distinguished from each other by noting the correct solution will yield a positive scalor when dotted into \vec{R}_{Q} and the second solution will yield a negative scalor when dotted into \vec{R}_{Q} . Hence we obtain a second condition which the solution of (10) must satisfy:

$$\vec{R}_{Q}$$
, $\vec{R}_{Q} > 0$

The condition expressed by (11) can be eliminated by finding a solution of (10) from a class of vectors already in the plane of the trajectory. This can be accomplished by considering the following special example:



The vectors \overrightarrow{R}_Q and $\overrightarrow{Q'Q}$ are not in general in the plane of the new trajectory drawn above; $\overrightarrow{E}_S = \overrightarrow{E} + d\overrightarrow{E}$

From this special case we observe that $\hat{\lambda}(x_0) = \hat{R}_{Q}$, where

$$\vec{\lambda}(x_o) = \vec{\epsilon} + x_o(-\vec{\epsilon} + \vec{R}_p)$$
 $0 \le x_o \le 1$

for \mathbb{R}_p is in the plane of the old and new trajectories. Consequently the solution can be obtained by varying x in the interval $0 \le x \le 1$ such that

$$\vec{h}_{s} \times (\hat{\lambda}(x) + \vec{\epsilon}_{s}) \cdot (\vec{R}_{Q} - \frac{l_{s}}{1 + \hat{\lambda}(x) \cdot \vec{\epsilon}_{s}} \hat{\lambda}(x)) = 0$$

where $\vec{h}_s = \vec{h} + d\vec{h}$ and $l_s = l + dl$. From (5) $dl = \frac{2}{ll} \cdot \vec{h} \cdot \vec{R}_p x \cdot d\vec{v}_p$ Hence instead of varying 3 scalars representing the components of possible solutions one has to vary only one scalar x which is restricted to the interval $0 \le x \le 1$.

Now for all possible situations there exists some scalor x in the interval $0 \le x \le 1$ such that $\hat{\lambda}(x) = \hat{R}_Q$, where $\hat{\lambda}(x)$ is given by one of the following four formulas:

$$(12) \left\{ \overrightarrow{\lambda}_{1}(x) = \overrightarrow{\epsilon}_{\varsigma} - x(\overrightarrow{\epsilon}_{\varsigma} + \overrightarrow{R}_{p}) \qquad \overrightarrow{\lambda}_{2}(x) = -\overrightarrow{\epsilon}_{\varsigma} + x(\overrightarrow{\epsilon}_{\varsigma} + \overrightarrow{R}_{p}) \right\}$$

$$(12) \left\{ \overrightarrow{\lambda}_{3}(x) = \overrightarrow{\epsilon}_{\varsigma} + x(-\overrightarrow{\epsilon}_{\varsigma} + \overrightarrow{R}_{p}) \qquad \overrightarrow{\lambda}_{4}(x) = -\overrightarrow{\epsilon}_{\varsigma} + x(\overrightarrow{\epsilon}_{\varsigma} - \overrightarrow{R}_{p}) \right\}$$

Thus the problem is solved by finding x and j ($0 \le x \le 1$, j = 1 or 2 or 3 or 4) such that

(13)
$$\vec{h}_{\varsigma} \times (\hat{\lambda}_{j}(x) + \vec{\epsilon}_{\varsigma}) \cdot (\vec{R}_{Q} - \frac{\ell_{\varsigma}}{1 + \hat{\lambda}_{j}(x) \cdot \vec{\epsilon}_{\varsigma}} \hat{\lambda}_{j}(x) = 0$$

and

(14)
$$\hat{\chi}_{j}(x) \cdot \vec{R}_{Q} = 0$$

This should not be too difficult for a high speed computer for the process of finding x and j may proceed by setting j-1, 2, 3, or 4 and for each value of j consider the possible values of x=0, .02, .04, ..., .88, 1.00 until the solution satisfying (13) and (14) has been found. After finding x and j the miss vector \vec{d} and the miss distance d can be readily calculated since

$$\vec{R}_{Q'} = \frac{\ell_{g}}{1 + \lambda_{j}(x) \cdot \vec{\epsilon}} \hat{\lambda}_{j}(x)$$

and

$$\vec{d} = \vec{R}_Q - \vec{R}_{Q^i}$$

These vectors can be easily expressed in any other orthogonal inertial frame of reference with the same origin as \sum by multiplying the vectors in \sum expressed as (3 x 1) column matrices by the orthogonal matrix

$$A = \begin{pmatrix} \ell_{11} & \ell_{12} & \ell_{13} \\ \ell_{21} & \ell_{22} & \ell_{23} \\ \ell_{31} & \ell_{32} & \ell_{33} \end{pmatrix}$$

where \mathcal{L}_{ij} is the cosine of the angle between the i'th new axis and the j'th old axis.

MM:ws