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Abstract — Zusammenfassung — Résumé

The Theory of Correctional Manoeuvres in Interplanetary Space. The cowpnlatiun
of correctiona] manoeuvres is shown to be independent of all small pcrtqum_\g forces,
<o that the rocket track may be supposed to be a KeprLerian arc which it !ollgws
under the attraction of the Sun alone. The calculation can be rc(luz:_ed to a substitution
of the observed divergence from a pre-computed track into given formulae,‘ the
coefficients in which can all be determined prior to departure and stored in a

computer.

{Uber die Theorie der Bahnkorrekturen von Raumfahrzeugen. I2s wird gezeigt,
daB die Bestimmung von Bahnkorrekturen unabhingig von den schwachen Stoérungs-
kraften erfolgen kann, so daB3 die Bahn des Raumfahrzeuges als I(EPLE!{-Ba.hn, allein
der Anziehungskraft der Sonne unterliegend, angesehen werden kann. Die Berechnung
kann aul das Einsetzen der beobachteten Abweichungen von _df!r \«'orau‘&_abcrechnot.(’n
Bahn, in gegebene Formeln zuriickgefiihrt werden. Die Koeffizienten kénnen vorher
bestimmt und in der Rechenmaschine gespeichert werden.

Corrections de manoeuvre en astronautique. Le calcul des correct_ions ‘dc ma-
noeuvre est montré étre indépendant des petites perturbations et la trajectoire peut
otre assimilée & un arc KepLiRrien décrit sous I'attraction solaire seule. I,cs‘ L‘:’!.lt‘.ll]f-i
ce réduisent a la substitution dans des formules préparées de I'écart observe a une
trajectoire préétablie. TLes coefficients de ces formules peuvent étre calculés avant
le départ et incorporés dans la mémoire d'un calculateur.

I. Fundamental Theory

It will be assumed that the trajectory along which the space vehicle is to be
transferred between two planets has been accurately computed prior to departure.
This trajectory will be computed in three arcs,

(a) in the vicinity of the planet of departure,

(b) in interplanetary space,

(c) in the vicinity of the planet of arrival.
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It is to be expected that arvc (a) will be calculated by adopting a frame of ref-
erence moving with the planet of departure, allowance being made for the
perturbing influences of the Sun and other bodies by small corrections. Arc (h)
will be calculated by reference to a heliocentric coordinate system and the major
attraction to be taken into account will I'e that of the Sun. The arc of approach
to the planet of arrival appears to be of minor importance, since it is likely that
the approach manoecuvre will be linked to radar observations made from the
vehicle over the last phase of the voyage and will not be related to a precomputed
trajectory.

The first stage in pre-computing the trajectory will be to choose a suitable
optimal interplanetary arc. This could be done by neglecting the finite extent
of the gravitational ficelds of the terminal planets, as has always been done in
optimal trajectory calculations in the past, and making allowance for the Sun's
field alone. This method will yield a rough trajectory. The accuracy of this
could then be improved as follows: Choose a point P’ upon it in the vicinity of
the mid-point of the arc and assume the vehicle is in this position at the instant
of arrival at P as predicted by the approximate calculation. Now integrate
numerically along arcs backwards and forwards from P, taking account of the
actnal structure of the gravitational field, until the planets of departure and
arrival are reached. It may then be necessary to adjust P and to reintegrate
to achieve satisfactory termination of the trajectory upon circular orbits about
the two planets.

Having projected the space vehicle into the arc (a), it seems reasonable to
suppose that, unless a large discrepancy between the actual trajectory and that
previously computed is found to be present, no correcting action will be taken
until the rocket has entered arc (b) and the elements of this orbit have been
established. In this paper, therefore, attention will be given to the main problem
of computing any correctional thrusts which may become necessary during the
motion along the arc (b). Immediately
a divergence from the accurately pre-
computed track C is observed, it be-
comes necessary to find a fresh track C’
to the target planet. C and C" will be
neighbouring trajectories in space and it
is reasonable to assume that the effects
of all minor perturbing influences will
be identical for both. It then follows
that the divergence of C' from C, both in
relation to position and to wvelocity, is
independent of these influences. But the
appropriate correctional manoeuvre de-
pends only upon this divergence and its
calculation is accordingly independent of
all small perturbing forces and may be
based upon the assumption that the
Sun’s field alone is operative. This we Frig. 1
proceed to demonstrate in detail.

s

(aede vedv wedw)
(redic, vedv wedn)

Let xyz,0 be rectangular cartesian axes moving with the Sun, O being the
centre of this body. Let P be any point (x, v, z) and [ a given point on the orbit
of the planet of arrival (Fig. 1). Suppose that a rocket is at P at the instant the
planet is at Q. Let T be the transit time for the planet to move from Q to J.
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Then there is a unique ballistic arc joining P and ], along which the rocket can
coast in the time 7. If the rocket is to rendezvous with the planet, it must enter
this arc at P. Let (x, v. w) be the components of the rocket velocity at P which
will cause it to follow the arc PJ. Then we can write

w=1i(x,v27T)+epx,y2T),
v = 5(xi y;'z; T) +EQ(x! yl z’ I‘)’ (1)
w=1uw(x,v,2,T)+er(x,y27T),

where (if, 7, @) are the forms taken by (%, v, @) in the absence of all small perturb-
ing forces and the terms involving e represent the corrections which must be
made to allow for these. & is small. If ¢ = 0, the arc PJ is a KEPLERian arc
and (i, 7, @) are accordingly the forms taken by the functions (w, v, w) on such
an arc. Similarly, if V is the velocity increment which must be given to the rocket
upon arrival at J to transfer it into a circular orbit about the target planet,

V="V(y2T) +eQx v 2 T). 2)

If 7, is the velocity of approach from a great distance relative to the target
planet and if V. is the velocity in the circular orbit about this planet, we shall
take

V=|2VIFVsd—V, (3)
This formula will be quite accurate enough for our purpose.

Now suppose that PJ is the pre-computed interplanetary arc, but that, at
the instant the rocket should be at P with velocity (u, v, @), it is found to be at
P’ (x + dx, y + dy, z -+ dz) with velocity (« 4 du, v + Av, w + Aw). Let P'J’
be the arc into which it is decided to transfer the rocket in order that it shall
rendezvous with the planet at J'. Let dT be the additional transit time for the
planet to move from J to J'. Then the time of transit over the arc P'J’ must
be T + dT and hence, if (1« + du, v + dv, w -+ dw) is the rocket velocity desired
at P’ to effect entry into the arc P'J’, from egs. (1) it is found that

ani aii aii 0t
du = adx“+'a_ydy+§dz+a_}"d1 +
ap ap ap ap )

etc., to the first order in dx, dy, dz, d1. & being small, the terms in the bracket
are of the second order and will be neglected. At this stage, therefore, as was
forecast above, the contributions made by the perturbing forces are eliminated.
The derivatives 2i/dx, etc. are to be calculated on the assumption that the arc
PJ is KepLERian. The “bars” over the quantities (4, 7, @) will henceforward
be omitted.
The velocity increment required at P’ has components
du — Au, dv — Av, dw — Aw, (6)
and is of magnitude
[(du — Au)? 4 (dv — Av)? + (dw — Aw)?]'2 _
= [AgdT)2 + 2 A4,dT + 4,]'~, (6)

e

where
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dw [dw ow ow

on GGl d 2
Ay = (Ej_c dx 4 5; dy -+ a—:dz — /_’fu)

av v v 2
"I— (a dx + a—y dy —f— a—zdz — AU)

dw ow dw 2
g [t el FYON O i R I P
| ! (ax x - 5y dy - = dz Aw) . (9)
It will be observed that A, is of zero order, A, is of the first order and A, is of
the second order in the small quantities dx, dy, dz, Au, Av, Aw.
The velocity increment necessary at J'is IV 4- dV7. From eq. (2), neglecting
the perturbation, it is found that

alv al’ ol a1
dV = —dx + — —dz -
Pranlinit i fe =t
= BydT + B,, (10)
where
2l
By = 2 (11)
av v al’
By = — —— e
e dx 5y dy + = dz. (12)

Clea.l:ly, B, is of zero order and B, of the first order in the small quantities.
~ The net velocity increment required to transfer the rocket from P into a
circular orbit about the planet at ]’ is now seen to be

W=V + BydT -+ By + [Ag(dT)? + 2 A, dT + A,]'e. (13)
J' has not yet been determined and hence dT is arbitrary. This quantity will
now be’chosen to min_imize the velocity increment (13) and hence the propellant
expenditure. It will simplify the calculation if the reasonable assumption is now
made that the pre-calculated trajectory is an optimal one. If this be the case,
when dx = dy = dz = Au = Av = Aw = 0 the value of d7° minimizing (13)
must be zero. For zero values of the small quantities dx, etc
Ay =A4,=B;=0

and the expression (13) reduces to

W=V+4 B,daT + FAU‘fzdﬂ. (14)
This must be a minimum for d7 = 0 and this is so if, and only if,
|B,| << 45V, ie. if B2 < A,. (15)

Here the square root is clearly to be taken positively. This convention will be
assumed in all that follows.

4%
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Also, from its definition (6) as a sum of squares, it is necessary that
AdT)? +2A4,dT + A, =0 : (16)
for all dT. Tt follows that

Agdy= A520. (17)
Iirst consider the special case when
Ag Ay — A2 =0. (18)
Then Y
Ag@dT)2 4 2 4,dT +A2=A[,(dr+2-;) (19)

and the expression (13) for the net velocity increment reduces to

- (20)

' A
W=V + BydT + By + |4\ (dT 2l }i;)

Since |By| < 4,"2 by (15), this expression is a minimum when

AT = — A4/A, (21)
and
””’!nin = V _} (AO B! e A 1 BU) FJIA(]’ (22)
In general,

AgAy — A2>0 (23)

and then ;
Ag(@T)2 4 2A4,dT + A,>0 (24)
for all dT. Differentiating eq. (13) with respect to dT twice, it will be found that
dw : AgdT + 4, ) (25)

a@1) =~ ot {4 a2 4,dT + A4, ._

aw Ay Ay — A2 (26)

J@T): ~ [Ag@T)e £ 24, dT F A,T"
If the first derivative is zero, then
AgdT -+ Ay = — By [4y(dT)? + 2A4,dT + A,)1? (27)

F!.l'l{l, after squaring, this reduces to
- 0“t2 1_2 28
AfdT)2+2A4,dT + Ay = _‘1_.__‘;._ i ‘:2 . (28)

For variable dT, the minimum value of the left-hand member of this equation is
1
q (Ag Ay — Ay
0

ich i i 28) accordingly possesses
which is clearly less than the right-hand member. Eq. (28) accor dmg yp
two real roots. Eliminating Ao(d7)2 + 2 4,dT + A, between eqgs. (27) and (28),

it follows that

A A e A T : .
AgdT + A, = — B, (-_;’K%_—Bo;-) (29)

and hence that

12
B, (fi_o Ay — Alz) 4, (30)

5
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Since the second derivative (26) is positis 2 for all values of 47, eq. (30) determines
the value of 47 which minimizes W, Tf will be found that for this value of a1

W= Wyn=V + ;{[(A“ — Bo®) (Ag Ay — A\)]V2 + Ay By — A4, Bo}. (31)
0

It will be observed that in the special case (18), the results (30) and (31)
reduce to the eqs. (21) and (22) respectively. Eqs. (30) and (31) are therefore
always valid and the former determines the position for the new junction point J’,
if the correctional manoeuvre is to be caried out with the least possible propellant
expenditure. In [1], it was assumed that d7°= 0. The components of the
velocity change necessary at P’ are now obtainable from eqs. (4) and (5).

The quantities 9u/dx, etc are all calculable immediately the interplanetary
arc PJ has been selected and could be tabulated at hourly intervals along this
arc prior to departure. This information could be held in the store of a computer
and this device programmed to yield 4, 4,, etc and the velocity increments (5)
immediately dx, dy, dz, Au, Av, Aw becone available, Expressions from which
these partial derivatives can be computed at any point on a KrpPLERian arc
are determined in the next section.

II. Correctional Formulae on a Keplerian Are

In this section we compute, in suitable coordinates, the partial derivatives
corresponding to those introduced in section I. We employ polar coordinates
defined as follows: Let O be the centre of the Sun and let 0Z be perpendicular
to the orbital plane of the planet of arrival (I7ig. 2). OR is the line of intersection
of the planes of the pre-calculated rocket track and of the planet’s orbit. If P
is any point, ON is the line of intersection of the plane ZOP and the plane of
the planet’s orbit. If » = 0P, y = / ZOP and ¢ = / RON, the position of P
is determined by the coordinates (r, ¢, y).

The elements necessary to fix the posi-
tion in space of any possible rocket orbit
are defined as follows: Let 4 be the posi-
tion of perihelion, and let the plane of the
rocket’s orbit meet the plane of the
planet’s orbit in the line 0S. Let
2=,/ ROS, and let & =0 + / SOA.
Let ¢ be the angle between the orbital
planes of the rocket and planet. Also let e
be the eccentricity of the orbit and a its
semi-major axis. Then the orbit is
completely determined by the elements
(a,e,@,1,8). The corresponding determinate
elements of the planetary orbit will be
denoted by a,, ¢,, @,. The position in ‘he
orbit of any point P is determined by 0,
where 0 =0 - / SOP, or, alternatively,
by the eccentric anomaly E.

Let the planet be at Q when the rocket is at P, and suppose the planet can
move to J in time 7. We now formulate equations which determine the unique
orbit along which the rocket can move from P to [ in time T. Quantities at P
will be represented by plain symbols, those at J on PJ will be distinguished by
a subscript 1, and those at J on Q] will be distinguished by a subscript 2. Then

n=itn  O0=0=¢ =n+4 Q. (32)

Tig. 2
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Also, let E, denote the eccentric anomaly of Q; this is a known quantity at any
given time, and so is a constant in all our equations. :
Applying KEPLER's equation to the two arcs PJ, Q], we have

e T
E,—E —e(sinEy —sinE) =5 (33)
Ey - Eq — ¢q (sin Ey —sin Eg) = 1, T, (34)

where 7, = p'/2[a ¥ and p is the acceleration due to the Sun at unit distance.
Also, at P we have

r=a(l —ecoskE), (35)
tandi(o — &= it—: tan } E. (36)
At ], regarded as a point on the arc PJ, we have :
r,=a(l —ecosE,), (37)
s

tand (0, — @) = |/ 7o tan } Ey. (38)

At ], regarded as a point on the arc @], we have
ry = ay (1 — ggcos Ey), (39
tan } (0, — @) = V%'F? tan } E,. (40)

—

In the last of these, 0, has been replaced by 0y, in virtue of egs. (32).
Also, at P spherical trigonometry yields the equations

tan (¢ — £) = tan (0 — ) cost, (41)

cos ¥ = sin () — Q) sini. (42)
Again, using 2 = 0; — & {from egs. (32), eqs. (41) and (42) can be written

tan (0, — ¢) = tan (0; — 0) cost, (43)

cos y =sin (0, — 0) sin <. (44)

The ten eqs. (33) — (40), (43) and (44) determine a, e, @, 1, 0, 0y, 1, E, Ey, E,
in terms of 7, ¢, y, T. The last four quantities are the independent variables, and

we shall calculate the necessary partial derivatives with respect to these. To do

this, we shall totally differentiate the above equations, and then the ratio of any
two differentials will give the corresponding partial derivative. As explained in
section I, these derivatives are to refer to the pre-calculated rocket orbit. Hence,
after differentiation, we may put £ = 0, and so, from eqs. (32), 6, = m.
From eq. (33), using eqs. (35) and (37), we find
2 : ! Jul?T pl?
rIdE,—rdI:—a(smEl——smE)de:——QasTda—i—;ﬁdT. (45)

From eq. (34), using eq. (39), we find
) rydE, = agngdT. (46)
From egs. (35) — (40), (43) and (44), we find, in turn,
dr = 14 da — acos E de + aesin E dIZ, (47)
= :
2tan}E | 1/1+

dry = % da — acos E;de + ae sin E, dE,, (49)
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=
ot

5 _ 2tan L E SR
COS(‘.Cz % fel] (dg — d P ____._“._..]:_._ - /l + ¢ ‘
1 @) M= oiE de , e sec? } I dE,,  (B0)
dry = ageysin By dE,, (61)
.
e g B 1 -+e 2
2 cosec? § i, d), = l/ - c’: sec? § I2, dI,, (52)
sec? g .(dOI — d) = sec? 0 (d); — d0) cos i 4 tan 0sini di, (53)
‘ ‘ sin y dy = cos 01 sin i (dl); — d0) — sin 0 cos 1 di, (54)
Iiqs. (46) and (52) together give
dfy = odT,
while eqs. (46) and (61) give o
where e 52
__agny Tde. . »
o = - 1/1—:-;2 sin® § @, sec? } E,,

pi o’ Bt SINE,,
4]
In the case E, = m, sec? } E, is infini . Lo
i 7, is infinite, and « is apparently infinite. F :
from eq. (40) we have on the pre-calculated orbit, Y Y % Haweves

1/1 + ¢ )
-/:l . tan § I,

cot § @, = :
~to

FFrom this
‘ ; 1+e .
cos } Ey cos § @y = I/i _"{::’0 sin } E, sin § @,.
. - - - n
Hence, if Ey = 7, it follows that @, = 0. We can rewrite the last equation as
/ 1 —~ ¢ .
Es cos @, cosec § E,.

When E, = n, d@, - 0, the right-hand member of this equation has the value
[(1 — €)/(1 + ¢5)]'2, and the corresponding value of o is '

@y Mg l [ "36
oV I4de
Any—other apparent infinity can be dealt with in a similar way.
Eq. (41) applied to the pre-calculatec rocket orbit, i.c. putting £ = 0, gives
tang = tan 0 cos . ’ (5'4;‘)

We now solve egs. (53), (54) and (55), for di, d0 in t
¢ 33), (54 Hh), 5 er f de, dy, . Usi
eq. (57) to effect simplification, we find that s o dg, dy, 4T Using

sin } @ sec § E, = I

di =o,dp+ f dy + y,dT, (58)
— A0 = agdp + B,dy + y,dT, (59)
oy = — sin 7 cot f,
By = — cosisec? ) cosec ) cos? ¢ sin y,
1= oy,
oty = COS{,
Py = — sinisec 0 cos®Psiny,

ye = o (1 — cosi).
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Using eqs. (55), (56), (58), (59) and performing some si.igl]t manipulation, we can
now write eqs. (47), (45), (48), (49), (50), in that order, in the matrix form

a b e d g da fydr
ag by ¢ dy e de ko dT ) .
a, by oy dy ey di = | gadd + hydy + kydl (60)
a, by ¢ dy ey ar 1 T
ag by c5 d; € dE, kgdl
where
3pl2T
= ‘?"lla, g = "2'?3!—2 v
by = —acosk, by = — a (sin E; — sin E),
¢, =0, tg== 0,
dy=aesink, dy= —7,
gy=10, Eo =0
h=1, ky = p\l%a'2,
a; =10, a, = rla, az =0,
g @ g
sinkicos*4 (4 —a) - ; L
b= (1—¢) (1 —ed)i2’ oges sy, s (T —e) (1 —e?)'?
¢y =cos?}E, ¢y =0, ¢; = cos?} By,
d. 1 -1--4—"1: cost i =l  &=10 d, =0,
~ | i o
ey =0, e, = aesin I, € = /T-:-_—gsm2 3@,
gy = agcos? 3 E, ky = B, kg = o cos? § Iy,

hy = Pycos® L E,
ky =y, cos® L E.

Let D be the determinant |a, b, ¢4 d, €5 and let DA i DB;, DC; (1 = L2, 3, 4,5)
denote the cofactors of a;, by, ¢; respectively in D. Eqs. (60) then give
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Let (u,v,w) be the components of velocity corresponding to the polar
coordinates (7, ¢, ) in the senses shown in Fig. 3 and let 9 be the angle between

the transverse direction at P and
the plane of the planet of arrival.

da = fedr + ggdp + hgdy + ke dT,
de = f,dr + g, dp + hydy + k,dT, (61)
d® = fgdr + ge A + hgdy + ke dT,

where
fo= Ayl gs = A3 83 hg = Ay by, ke = Ai ki,
f2= Byl g, = Bsgs hy = By hy, k, = Biki, (62)
fo=0Cy 5 gs = Cy g3, hg = Cy Iy, kg = Ci k.

In the last column, i==2,3, 4,5 and the repeated subscript summation conven-
tion is operative. _ -

Let #,, vy denote the radial and transverse components of velocity. Then,
at P,

/(1(—17"3} esin (0 — @),
by Jral—e)
-

Uy =

(63)

. Then, we have, Z
"= 1i,,
7= Up COS Y, (64) T
w0 = vy siny, \\
where, by spherical trigonometry, \\\ ;
tany = cos (0 —- £) tani. (65) [
Employing eqs. (32), (41), (42), eq. Al s P )
(65) can be written - L "\ ‘11
tany = — cot (0, — ¢) cos y. /.-/"/ 2/
(66) Z s,
I_)i‘l'[erent.iating this_ equation and :
using eq. (H5), we find that " 2
sec?yp dy = — cosec? ¢ cos y dep —
— cot ¢ sin ydy + Fig. 3
o cosec?dcosydl. (67)
I'rom eqs. (63), (64) we obtain
dun = — ‘_’,ﬂﬂ da -+ ;?'(i'?i".ééj de + wcot (0 — @) (d) — di), (68)
dy = 2—12‘; da — -1-3{:'-&% de — L dr — vy sin ydy, (69)
dwe = ;:; da — i"?f’—?r_'.;z de — T— dr 4 vgcos y dy. : (70)
We now write
[, =— % g y = (i E:_EZ) : 1ty = wcot (0 — @),
Lo o PE
2 2’ . 1 — e
Fosen ok IR . S
37 2a’ 3 1 —¢?

Po = vgsiniy cos?y cosec? ¢ cos g,

Gy = vgsiny cos?y cot ¢ sin y,

Pa= — pycoty,

Gs = — gy coty

Then, from eqs. (68) — (70) and using eqs. (61) and (67), it will be found that

duw =TI dr + Gydp + Hydy + K, dT,
dv = Fydr 4 Gydd + Hydy + K, dT, (71)
dw = Fadr + Gyd + Hydy + K,dT,
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where _

Fy=1fg +myfs —nyfs

Gy =118 -+ 7187 + 1y (2 — g),
Hy =1y hg + myhy + ny (By — hg),
Ky = ly kg + my kg + 1y (yy — k),
Fy =lyfg +myfy —vfr,

(;3 = lg £ l‘ My Bq '*' }52.

Hg — l(g hﬁ + m"s k? "{' gz;

Ky =1l kg + my kg — o Py,

Fy =lyfg +myfy —wlr,

Gy = Ili:; gs + My gy + P

Hy = lyhg -+ my hy + gy,

Ko =Ily kg + mgky — o Py

At J on PJ, the radial and transverse components of velocity are u;, v; where

!
/ " . -
uy = |/ ——5 esin (0, — @),
' a(l_ o (72)
|-’:.'.f.a (1 —e?)
'Il_'_ll e T Y e
"1
Differentiating these two equations, we obtain
o o B g A o NG (73)
dr:i——é-—ada+g“_.82] ¢ L (dO, )
| VXS g PN (74)
dv, = -é—ada — i 62:6:: 5 7y
We now write
- ! — ....___ﬁ.dl. 2 #H, = — H, col @,
{'4__——2_&' m“_e{].—ez)' 4 .
“ . Lo
f-sﬁi-a, Y —
Then, from eqs. (73) and (74), using eqs. (55), (66) and (61), we find that
dity == Fydr + Gydd + Hydy + K,dT,
dvy = Fgdr + Ggdd + Hydy + K, dT, (75)

where

Fy=1lyfg +myfy — g fs,

Gy =14 8¢ + My 87 — My L,

Hy =l hg + my by — 1y by,

Ky = lykg -+ myg by + 1y (o0 — kg),
Fy =lsfg + mg /s

Gy = l58¢ + M5 gy,

Hy = lg hg + mg hy,

Bvy

Kg=lIghg+ mgh,; — =
1
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At J on QF, the radial and transverse components of velocity are u,, v,, where

4 /J-‘ ‘,u.", _] (0 e }
— B T Y ] — ),
2V ag (1 — 2 . (16)
e
v Vo (T—24®)
2 7
I'rom these we find that
dtty = — 1, cot @, df);,
v
dvy = — -2 gy
2 r
and so, using eqs. (55) and (56), we have
duy = Ky dT, 77)
dvy = K,dT, L

where
Kg = — a1y cot @,, K, = — Bugfr,.
At J, let ¥V, be the magnitude of the velocity of the rocket relative to the
planet as it approaches from.infinity. Then
Vo? = 102 + 0% + 1,2 4 0,2 — 214, 11y — 2 Uy Uy COS T,
From planetary theory, we have

\ 2 I
w4 od=p (1’_ o ;) ,
1

Mz2 “f— 1}22 =y (72 _ __1 ) :

1 ay
Hence
, 4 1 1 p ) -
Viet=u (E s -a) — 2y 105 — 20, vy cO8 1. (78)
Differentiating this, we obtain
2n L
VodVy= — ;{E dry + ;&E da — uy duy — uydu, -

+ vy vy sintdi — vy cosi dv, — v, cos i dv,. (79)

Differentiating eq. (3), it will be found that '
1%
V= dV,.
a V4V, 0
Writing
4 Ap
S B e e o — A
VoV £ 7y Iy 5 g2 Mg = Aty
P = — Avyv,s8in1, g = Avycosi,

it follows from eq. (79), after employing egs. (56), (58), (76) and (77), that

AV = Fydr + Ggdp -+ Hydy + KodT, (80)
where .

Ig = lgfg + mg I’y + ng Iy,
Gy = Iy + mgGy + 3Gy + pgary,
Hg = lghg + mg Hy + ng Hy + pg B,

Kg = lg kg - mg K, -+ ng g + pgyy, + 4 (13%,{:’ + 1y K¢ + v, K, cos i) :
1
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Any requircd-partial derivative can now be obtained from the appropriate
equation. For example, from eqs. (71), we have
du s du
Tl |
2 is poi ards dr, dg, dy are to be understood as observed q:.mnti{ics
llrgitlnt]llgtthi}‘,oil::tl*'[.i“gl.wll,] ‘il{;(:zcoofdinfites of P are (_r, ¢, x), then the coordinates of
P are (r +dr, ¢+ dp, x + dy). We now write ;
P, = Fydr 4 G,d¢$ + Hydy — Au,
Py = Fydr + Gydd + Hydy — Av,
I P, = Fydr + Gyd¢ -+ Hydy — Aw.
| Then, from eqs. (7), (8), (9) and (71), we have
Ag=K® + K2 + Kj?,
A, =K, P, + K, P, + K, P,,
A, = P2 + P2 4 P2
Similarly, from eqs. (11), (12) and (80), we obtain
By=K,,
By = Igdr 4 Ggdg +4 Hgdy.
Then d7T is determined from eq. (30). Using this v?lue of dT, from eq. (p), the
components of the velocity change required at P’ are
P, + K,dT, 2+ KydT, Py + KydT,

and the total velocity increment required is given by eq. (31).

Gy, ete.
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Zusammentassung — Abstract — Résuméb

Isotherme Diisenstrimungen. Die Méulichkeit, mit Hilfe der isothermen Ex-
pansion hohe Geschwindigkeiten zu erzeugen, wurde rechnerisch untersucht, Dabei
wurden folgende Fille behandelt: Konstante Temperaturdifferenz zwischen Wand-
und mittlerer Gastemperatur, konstante Wandtemperatur und gegebene Wiirme-
produktion lings der Achse. Der Einfluf} der Reibung und der Temperaturgrenz-
schicht wurde beriicksichtigt und fiir den turbulenten Wiirmeiibergang die REvNOLDS-
Analogie zu Hilfe gezogen.

Isothermal Nozzle Flows. The possibility of generating high velocities by means
of isothermal expansion was numerically investigated. The following cases were
treated: Constant difference between wall temperature and average gas temperature,
and constant wall temperature with given heat production along the axis.  The
influence of friction aml of the temperature boundary layer was considered and for
the turbulent heat transfer the RevNoLps analogy was applied.

Ecoulement isoftherme en tuydre. Une investigation numérique sur la possibilité
d'atteindre de hautes températures par expansion isotherme. [es cas suivants ont
¢té traités: deart constant entre température moyenne du gaz et température de
paroi, fempérature constante de paroi et apport donné de chaleur le long de l'axe.
L'influence de la viscosité et de la couche limite thermique ont été considérées:
l'analogic de RevNoLps étant utilisée pour la transmission de chaleur en régime
turbulent.

I. Einleitung

Es ist naheliegend, Reaktoren als Ene giequellen zur Erzeugung von groBen
spezifischen Impulsen in Betracht zu ziehen. — Ihre grole spezifische Wirme-
produktion kann jedoch nicht ohne weiteres in Form von hoher spezifischer
Energie des KiihImittels weggefiihrt werden. Erhitzen wir das Gas isobar (abge-
sehen von Reibungsdruckabfall), so bleibt im Normalfall die Austrittstemperatur
des Kiihlmittels spiirbar unter der Oberflichentemperatur des Reaktors. Bei an-

! Vorgetragen an der Frithjahrstagung cler Schweizerischen Physikalischen Ge-
sellschaft in Brugg [2].

* Fiir die Anregung zu dieser Arbeit und fiir die wertvollen Ratschlige bei ihrer
Durchfiihrung méchte ich Herrn Professor Dr. J. ACKERET meinen besten Dank
aussprechen,

# Institut fir Aerodynamik der Eidgenossischen Technischen Hochschule (Vor-
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