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Abstract

The analyvtic solution is given for the absolute minimum
characteristic-velocity path from a point on an elliptical
orbit to a nonintersecting circular orbit. The orbits are con-
sidered coplanar and two impulses are used. Existence proofs
are given followed by proofs that the absolute minimum
satisfies both necessary and sufficient conditions.

More generally the complete analytic solution to the
terminal-to-terminal problem as first formulated by Vargo
[1]* is given.

An interesting consequence of the &palytic solution is the
proof that in optimal transfer the impulses are not in general
applied tangentially. Impulses are applied tangentially only
at terminals having zero radial velocity.

Each point on an elliptical orbit corresponds to an arrival
point of an optimum path from a lower energy circular orbit.
The Hohmann path arriving at apogee is rigorously shown to
be the optimum of the infinity of optimal transfer paths, for a
wide class of orbits.

Symbols

u = normal component of veloeity

v = radial component of velocity

r = nondimensional normal component of velocity

just after first impulse

y = nondimensional radial component of velocity
just after first impulse

« = initial radial distance

3 = final radial distance

r = distance ratio = «/8

A = nondimensional characteristic velocity

\* = characteristic velocity of transfer

u = gravitational constant

r» = nondimensional normal component of arrival
velocity

y» = nondimensional radial component of arrival

veloeity
subseripts as defined in text

* Presented  at  the  11th  International  Astronautieal
Congress, Stockholm, Sweden, August 14-20, 1960.

t Grumman Aircraft Engineering Corporation, Bethpage,
New York.

! Numbers in brackets indieate references at end of paper.

Introduction

The problem solved in this paper is that of finding
the analytic expressions for the minimum characteris-
tie-velocity path (hereafter called the optimum path)
for a class of orbital transfers. The optimum path solu-
tions are derived for transfer between two terminals,
and between a terminal and a “point.” For the purposes
of this paper we define a terminal as a locus specified
by a radial distance and a velocity vector, i.e., a posi-
tion on an ellipse with the line of apsides unspecified.
A “point” is defined by a radius vector and a velocity
vector. A ‘“point” then, is a specific position on an
ellipse whose line of apsides is specified. The class of
orbits considered are those for which the major apsis
of one terminal is less than the minor apsis of the other
terminal. This is tantamount to saying that a minimum
of two impulses is required to accomplish the transfer.

The formulation given herein is that of Ref. [2]
which was pioneered by Lawden.

The assumptions of the paper are:

1) Inverse square force field

2) Two-body equations

3) All orbits are coplanar

4) Impulsive thrusting

3) Two impulses are used.

Definition of Problem

Consider the problem of optimum transfer of a
space vehicle between two terminals. Let (uo, 20) be
the velocity components of the first terminal at a dis-
tance « from the attractive center. Let (ur, v¢) be the
velocity components of the second terminal at a dis-
tance 8 from the attractive center. At the first terminal
an impulse is applied resulting in new velocity compo-
nents (wu;, ;). The space vehicle then goes into a
transfer orbit, arriving at the second terminal with
veloeity components (u», ). Upon arrival at the
second terminal a second impulse is applied adjusting
the arrival velocity to the desired terminal velocity
(up, vr). For such a maneuver the characteristic-
veloeity is given by

M= A —

) 4 (01 — 0)?
+ Vs — wpt + (e — et (1)

FFrom conservation of angular momentum we have

1 = ! (2)

Us = — Wy L
ﬁ ?
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vf=[1—9quf+mh+h[1—l] (3)

Introduce dimensionless parameters x, y by:

ul*—-x,‘/g-, m=y1/£, (4)
(43 o

and in all other cases:

TG,':I,'VE, !.?"=y,'1/é. (5)
[ 4 o

Let- the distance ratio be denoted by

(6)

IR

Using (2), (4), (5), and (6), the characteristic-
velocity becomes

A* = /‘/E V(- z0)® + (¥ — yo)* (7)

+ Vz =z + (32 — yr)*l
And Eq. (3) becomes

gy = (1 =) + ' +2(r = 1). (8)
From (7) and (8) we get
l*//‘/§=\/(x—ru)*+(y—ya)“ (9)

+ Vi(rz — z2)* + (32 — yo)*

The sign of the radical /(1 — )22 + 12 + 2(r — 1)
as obtained from (8), must be taken the same as y; .
This is dictated by the fact that we are minimizing
characteristic-velocity.

Let M(z, y) denote the nondimensional characteristic-
velocity as given by the right-hand side of (9). From
(8) we observe the constraint relationship that

(1=-r"2+y¥+2(r-1) 20. (10)

If (10) is violated an imaginary radial veloeity results.
The physical interpretation of this is that the vehicle
cannot achieve a distance 8 from the focus; hence a
transfer in this ease is impossible.

Irom (8) and (9), we can now define the mathe-
matical problem of interest to be that of minimizing

N ) = (e — 20 + (4 — o)®

+ Ve — o)+ (= yr* (11)
subject to
A=-"MF+y+20-120, (12)
with
i prasnd, (13)
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Solution to Problem
In [2] it is rigorously proved that the function
Az, y) given by (11), will assume a relative minimum
at an interior point bounded by the closed curves
ys = 0 and y» = yr. Since A(r, ) is a differentiable
function in such a region, a necessary condition for the
solution (., ) of the minimum problem is given by:
L (14)
dr 9y
It is also shown in [2] that using the two necessary
conditions given by (14) we establish for y, # 0
(1 = Mz’ + 2(r = DIK
- 2yrl(1 = Pyrzee + 2(r — DK
+ [(1 = APyl + 2(r = Lyl =0 (15)

where

K=+/1-/"2+y+20r—1) =1p.

Introducing the transformation ' = (2/ys) into
(15), and simplifying we get

[(1 + r)z — 2y’ — 29/ [(1 + r)reer — 2]

A oa (‘16)
+[(1+r)re=2=0
Re-arranging terms
(1 4+ r)rfl® = 22[(1 + r)raeeyy) (17)
+ [(1 + Nzys — 2 — 1)} = 0. L
Dividing through by (1 4 r) we get
: —
1"2}:2 — 2rre y-_-’.c + [xr y‘_" -+ (yzf —1) /‘/ e r]
: (18)
/2
[orw - 0 -0 4/ ] -0
Factoring (18) yields
e forr -0 475
FL — 4 Tp Y= Yo = / 1 |
"/ + r (19)

X [rz - {-Tr ¥ = (y' — 1) 1’ < 1] =0

1]

From (19) we conclude that the minimum for
M, i) must satisfy one of two possibilities:

‘I\L

re = apy + (' — 1) l T (20)
or
. . 3
re = ey — (' — 1) ,‘_ g (21)

Combining terms in (20), and using 1" = (y= y#)

o + 4 2 = ‘Ui({'p + : 2 ) ‘22)
' 1/l+r yr \ 1 It

FFurther simplification of (22 yields




Y==Yr _

rr — Tr (23)
b "/1 +r

Using t23) and the expressions for the derivatives
(@n/adx), (d\/ay) given in [2] we conclude

y— . _ Yo _
T — X 3 . (24)

;I'-n‘{"‘." m

Eq. (24) gives y as a linear function of x, and setting
this linear funetion of r into (23) yields a quadratic
equation in z whose coefficients depend on the given
data. We then solve analytically and determine two
exaet values of x. E

Using the second possibility given by (21) and pro-
ceeding ax above we obtain

Yo — Yr _ Yr

Xl VT (25)
e 1+r

Y— Y _ Yo

A 1/ 2 . (26)
To r ——1 + =

Similarly the pair of Eqs. (25), (26) can be solved
analytically yielding two more exact values of r. Using
(24), (26) the corresponding y values are determined.

We have now determined analytically four solutions
(2, ¥) to the minimum problem. Using these four
values of (z, y) there correspond four values of . The
smallest of these four values of A is the absolute minimum
for X. This then gives the complete solution to the
terminal-to-terminal problem first formulated by
Vargo [1]. It will be shown subsequently that under
certain orbital conditions three of the four values of X
can be rejected analytically. We next study geometri-
cally the optimum transfer path given by the above
analytical expressions.

Replacing rz by r: in (23), we have the pair of equa-
tion from (23), (24)

Y2 — Yr _ Yr
La = U'p / _2_
xr + /‘/ —————
1 +r (97
Yoy o
o= Xy oy Vi i
Lo r /v— 1 g

Eqgs. (27) tells us that only in the case where the
first or second terminals have radial velocities ap-
proaching zero will the transfer orbit leave or arrive
tangentially. In all other cases the transfer orbit does
not leave the first terminal tangentially nor arrive at
the second terminal tangentiullv. In the interesting
case of transfer between a circular orbit and a point on
a nonintersecting elliptic orbit, the transfer path is
tangential to the circular orbit, but is not tangent to the
elliptical orbit (see Figure 1).

- Nontangential Arrival

Tangential Departure

Fig. 1, Optimum Circle-to-Ellipse Transfer

Eqgs. (25), (26) give the only remaining possibility,
and the same tangency conditions hold for this case.
We next study the case of transfer between an elliptic
and a circular orbit.

Ellipse—Circle Transfer

For the case where the second terminal corresponds
to a circular orbit we have

P:W:VE,‘/E:VE}LQ
B a 8 o

Nondimensionalizing we get

1/2
Ip =T e 0.

Since (15) does not hold for y. = 0 we first consider
transfer to an almost eircular orbit

Yp:=ic€

where ¢ is an arbitrarily small radial velocity. In this
case the annular region wherein the solution lies is
bounded by two ellipses arbitrarily close to one another.
Also the second possibility given by (25), (26) can be
eliminated for positive ye . It is shown in [2] that y. iz
less than yp, and rr is less than rr . That is, the trans-
fer orbit is itself an ellipse. Therefore the left-hand side
of (25) is strictly positive. Since r must lie between
zero and one we conclude

e i

T — / =
1/ 1 + r
Therefore (25) 1= physically unrealizable. L. (231
for arbitrarily small radial velocity ys becomes

Yo — € £
rip ==t ) ST (289

=
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Since € can be chosen arbitrarily small we conclude
from (28) that in transfer to a cireular orbit y. becomes
arbitrarily small. We then say

=1-MF+y+200=-1) =0 (29
and from (24)

¥y—= 4 _
X - Xo

tan ¢o - (30)

where
o
9 (31)
Xo+r V——-—-—l g

To determine the possible roots we first introduce
the following

tan ¢y =

Let A = tan ¢

B=yo—-:r.3tangag=r1/]+ tan gp.  (32)

Using these values of A, B we get from (29)
(1=~ +AH +24Br + (B —2(1 — )] = 0. (33)

Solving for r

) —AB
Tl (34)
3 s o%)
o (A’ — (1 ="+ 4AH[B —-2(1 -]}
e o
From (32), (34) and some simplification we get
tan’ g7 1/m £+ (1 —r) 4/2(1 +r) secey (33)

— sec’ ¢o

Since the denominator in (335) is strictly negative we
choose the negative possibility for the numerator to
insure that r is given as a positive quantity. That r
must be positive is determined by the fact that in this
case 1y and rp have the same sign (both orbital rota-
tions taken in same sense). For the retrograde case u,
and . would have opposite signs and » could be nega-
tive. This gives

tan"enr 4/ —— — (1L =r) v/2(1 4+ r) sec ¢ .
i 4 b S TEEE (a0

r* — sec’ ¢

In general the nondimensional characteristic-velocity
can bhe written as

+‘!'P_L’J1/l+( )
Las — Ip

For the ellipse to circle case using (23), (24), (36) and
(37 ) the absolute minimum for A is given by
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thnolutc
minimum

HH/___ |

1

. (38)
==\

_1/(xo+r l+)+J0°

Tor the special case of xy = 0, i.e., the initial velocity
all radial, this result reduces to that given by Lawden
[3]. Also for the case wherein y; = 0, circle-to-circle,
Eq. (38) reduces to the Hohmann result which is
hereby clearly shown to be an absolute minimum,

An analogous result may be obtained for the case of
circle-to-ellipse transfer.

Optimum Apogee Arrival Paths

In [2] it is demonstrated that for optimum circle-to-
ellipse transfer the first impulse must be applied
tangentially. For this case the nondimensional charac-
teristic-velocity is found to be

A m g — 1 \/E'rr — 2+ (2 — yr)> (39)
From (39)
Az -1+ xr—rr, (40)

the nondimensional velocity ¢ , in terms of the orbital
elements, is given by

R 4/1_'1'2 (11)
Tp

where: e; = eccentricity of elliptic orbit
r, = distance ratio at perigee.

Since departure from the circular orbit is tangential
(y = 0) it follows that

B
= M (42
£_1/l+r )

This may be deduced from a study of the annular
region containing the solution (see Ref. [2]1. Combining
(39), (40) and (41):

A= v l—i 2 | e N ,t .—-—--‘;I LLE YR
»

The least value of the derivative with respect to r of
the right-hand side of (43) 15

3 gk
BVEE =
2 o
If the least value of this derivative is positive then all
values of the derivative are positive. Therefore the
right-hand side of (43} is monotonically nereasing in r
provided

=i
A

q_
C_.l

(44)



It is shown in [2] that at apogee or perigee the equality
in (43) holds. For the class of orbits given by (44) the
night-hand side of (43) assumes its minimum value at
the smallest r, i.e., at apogee. Since from (43) it is
. impossible for A to assume a smaller value than the
minimum of the right-hand side it follows that A\ as-
sumes its least value at the smallest value of r, which
oceurs at apogee. .

Starting from the circular orbit, the methods given
in this paper give the optimum path to any given point
on the elliptical orbit. Therefore to every point on the
elliptical orbit there corresponds an optimum transfer
path. Of the infinity of optimal paths there is an
optimum transfer path. It is rigorously demonstrated
above that for the cluss of orbits defined by (44) the

Hohmann path arriving at apogee is such-a least fuel
path.
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