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Abstract

The analyvtic solution is given for the absolute minimum
characteristic-velocity path from a point on an elliptical
orbit to a nonintersecting circular orbit. The orbits are con-
sidered coplanar and two impulses are used. Existence proofs
are given followed by proofs that the absolute minimum
satisfies both necessary and sufficient conditions.

More generally the complete analytic solution to the
terminal-to-terminal problem as first formulated by Vargo
[1]* is given.

An interesting consequence of the &palytic solution is the
proof that in optimal transfer the impulses are not in general
applied tangentially. Impulses are applied tangentially only
at terminals having zero radial velocity.

Each point on an elliptical orbit corresponds to an arrival
point of an optimum path from a lower energy circular orbit.
The Hohmann path arriving at apogee is rigorously shown to
be the optimum of the infinity of optimal transfer paths, for a
wide class of orbits.

Symbols

u = normal component of veloeity

v = radial component of velocity

r = nondimensional normal component of velocity

just after first impulse

y = nondimensional radial component of velocity
just after first impulse

« = initial radial distance

3 = final radial distance

r = distance ratio = «/8

A = nondimensional characteristic velocity

\* = characteristic velocity of transfer

u = gravitational constant

r» = nondimensional normal component of arrival
velocity

y» = nondimensional radial component of arrival

veloeity
subseripts as defined in text

* Presented  at  the  11th  International  Astronautieal
Congress, Stockholm, Sweden, August 14-20, 1960.

t Grumman Aircraft Engineering Corporation, Bethpage,
New York.

! Numbers in brackets indieate references at end of paper.

Introduction

The problem solved in this paper is that of finding
the analytic expressions for the minimum characteris-
tie-velocity path (hereafter called the optimum path)
for a class of orbital transfers. The optimum path solu-
tions are derived for transfer between two terminals,
and between a terminal and a “point.” For the purposes
of this paper we define a terminal as a locus specified
by a radial distance and a velocity vector, i.e., a posi-
tion on an ellipse with the line of apsides unspecified.
A “point” is defined by a radius vector and a velocity
vector. A ‘“point” then, is a specific position on an
ellipse whose line of apsides is specified. The class of
orbits considered are those for which the major apsis
of one terminal is less than the minor apsis of the other
terminal. This is tantamount to saying that a minimum
of two impulses is required to accomplish the transfer.

The formulation given herein is that of Ref. [2]
which was pioneered by Lawden.

The assumptions of the paper are:

1) Inverse square force field

2) Two-body equations

3) All orbits are coplanar

4) Impulsive thrusting

3) Two impulses are used.

Definition of Problem

Consider the problem of optimum transfer of a
space vehicle between two terminals. Let (uo, 20) be
the velocity components of the first terminal at a dis-
tance « from the attractive center. Let (ur, v¢) be the
velocity components of the second terminal at a dis-
tance 8 from the attractive center. At the first terminal
an impulse is applied resulting in new velocity compo-
nents (wu;, ;). The space vehicle then goes into a
transfer orbit, arriving at the second terminal with
veloeity components (u», ). Upon arrival at the
second terminal a second impulse is applied adjusting
the arrival velocity to the desired terminal velocity
(up, vr). For such a maneuver the characteristic-
veloeity is given by

M= A —

) 4 (01 — 0)?
+ Vs — wpt + (e — et (1)

FFrom conservation of angular momentum we have

1 = ! (2)

Us = — Wy L
ﬁ ?
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vf=[1—9quf+mh+h[1—l] (3)

Introduce dimensionless parameters x, y by:

ul*—-x,‘/g-, m=y1/£, (4)
(43 o

and in all other cases:

TG,':I,'VE, !.?"=y,'1/é. (5)
[ 4 o

Let- the distance ratio be denoted by

(6)

IR

Using (2), (4), (5), and (6), the characteristic-
velocity becomes

A* = /‘/E V(- z0)® + (¥ — yo)* (7)

+ Vz =z + (32 — yr)*l
And Eq. (3) becomes

gy = (1 =) + ' +2(r = 1). (8)
From (7) and (8) we get
l*//‘/§=\/(x—ru)*+(y—ya)“ (9)

+ Vi(rz — z2)* + (32 — yo)*

The sign of the radical /(1 — )22 + 12 + 2(r — 1)
as obtained from (8), must be taken the same as y; .
This is dictated by the fact that we are minimizing
characteristic-velocity.

Let M(z, y) denote the nondimensional characteristic-
velocity as given by the right-hand side of (9). From
(8) we observe the constraint relationship that

(1=-r"2+y¥+2(r-1) 20. (10)

If (10) is violated an imaginary radial veloeity results.
The physical interpretation of this is that the vehicle
cannot achieve a distance 8 from the focus; hence a
transfer in this ease is impossible.

Irom (8) and (9), we can now define the mathe-
matical problem of interest to be that of minimizing

N ) = (e — 20 + (4 — o)®

+ Ve — o)+ (= yr* (11)
subject to
A=-"MF+y+20-120, (12)
with
i prasnd, (13)
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Solution to Problem
In [2] it is rigorously proved that the function
Az, y) given by (11), will assume a relative minimum
at an interior point bounded by the closed curves
ys = 0 and y» = yr. Since A(r, ) is a differentiable
function in such a region, a necessary condition for the
solution (., ) of the minimum problem is given by:
L (14)
dr 9y
It is also shown in [2] that using the two necessary
conditions given by (14) we establish for y, # 0
(1 = Mz’ + 2(r = DIK
- 2yrl(1 = Pyrzee + 2(r — DK
+ [(1 = APyl + 2(r = Lyl =0 (15)

where

K=+/1-/"2+y+20r—1) =1p.

Introducing the transformation ' = (2/ys) into
(15), and simplifying we get

[(1 + r)z — 2y’ — 29/ [(1 + r)reer — 2]

A oa (‘16)
+[(1+r)re=2=0
Re-arranging terms
(1 4+ r)rfl® = 22[(1 + r)raeeyy) (17)
+ [(1 + Nzys — 2 — 1)} = 0. L
Dividing through by (1 4 r) we get
: —
1"2}:2 — 2rre y-_-’.c + [xr y‘_" -+ (yzf —1) /‘/ e r]
: (18)
/2
[orw - 0 -0 4/ ] -0
Factoring (18) yields
e forr -0 475
FL — 4 Tp Y= Yo = / 1 |
"/ + r (19)

X [rz - {-Tr ¥ = (y' — 1) 1’ < 1] =0

1]

From (19) we conclude that the minimum for
M, i) must satisfy one of two possibilities:

‘I\L

re = apy + (' — 1) l T (20)
or
. . 3
re = ey — (' — 1) ,‘_ g (21)

Combining terms in (20), and using 1" = (y= y#)

o + 4 2 = ‘Ui({'p + : 2 ) ‘22)
' 1/l+r yr \ 1 It

FFurther simplification of (22 yields







