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{solution is given to the problem of transferring a rocket impulsive thrust from its motor directed along the tangent
| _pacircular orbit about one planet into another about to this orbit. It then recedes along a hyperbolie trajectory,
. wond planet with minimum expenditure of fuel. The merging imperceptibly with the elliptical orbit of transfer in
____‘_______{ ¢ petary orbits are assumed to be coplanar and the longi- which it moves under the influence of the Sun alone. Coming

10ck tube s of the planets in their orbits at the instants of de-
" sure and arrival of the rocket are supposed to be speci-
. The case of transfer between the Earth and Mars

*uken as a numerical example of the general theory.
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2 1 The Problem

h the pe- METHOD of ealeulating the orbit along which a rocket
L gas, may be transferred from a circular orbit about one
iborntory - et into another about a second planet with a minimum
» hundied | ) ependiture has been described in another paper (1).2

In addi- 3 Jdition to specifying the optimal trajectory of transfer,

reventing ¢, ypethod also determines the most favorable positions of
> that the £ planets in their orbits about the Sun at the instant of
e pulse.  inre. It may be necessary to delay departure for some
hock tule 1 jerable time until these favorable positions are attained
rzht)w:a t] both planets.  If, however, such a delay is not accept-
tormution » the problem arises of caleulating the most satisfactory
mounts «f Je of transfer when the two planets are in given relative
are }_\1 itions on the chosen date of departure. This is the prob-
tir di+ .weshall solve in this paper.
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2 Solution to the Problem

P T

e,

runsfer between two planets moving in coplanar elliptical
tsabout the Sun. Oz, Oy are fixed rectangular Cartesian
i1 the plane of the orbits. The method may be general-
ol to deal with the realistic three-dimensional problem by
: + mdueing into the argument a third axis Oz. However, the
usting theyijles upon which the solution to this more complex
the ”']‘“" “ *llem is based will be identical in character with those
Ansmittes 4o lead to a solution .of the more elementary one, and no
 reflection © utage will be gained, therefore, at this stage, by further
L tempest © o esting the analysis in order to achieve complete gen-
zone 166 5 = e Again, absolute accuracy could only be achieved

tiking into account the perturbations caused in the

‘wts" motions by their mutual attraction and the attrac-
~wof other bodies of the solar system, but the saving in
« ~which would result would be negligible by comparison
_lithe inevitable losses which will have to be accepted on
~ ot of our inability to navigate the rocket along any

wribed track without error. The most satisfactory pro-

tre will always be to disregard all such small effects when

for avi
g Lines

o ‘_' “puting an optimal track and then to allow for these, and
— . “wrerrors of navigation, during passage, by small correc-
= .l thrusts from the motor applied at various check points

§ ions has been outlined in (2).
______ ¢ Wi (1), we shall suppose that the rocket escapes from its
¢ e orbit about the planet of departure by means of an

i i ¢ the transfer orbit. A method of computing such cor-

seoo ioo o unted at the ARS 25th Anniversary Annual Meeting,
| 114-18, 1955, Chicago, Tll.
: '“'ft'*«OI of Mathematics. Member of the British Inter-
" ary Bociety,
mperatuie Nunibers in parentheses indicate References at end of paper.
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iie shall restrict ourselves to the two-dimensional problem .

under the influence of the planet of arrival, it falls along a
hyperbolic track whose apse is at the level of the circular
orbit. Upon arrival at the apse, it is transferred into the
circular orbit by means of a second impulsive thrust in a
direction opposing its motion, i.e., tangential to the circular
orbit. Thus, apart from two short periods of thrust, the
motor is inoperative,

If (—f, —g) represent the z and y components of the gravi-
tational field intensity acting upon the rocket when at the
point (z, ¥) at time ¢, both f and g will be functions of the
variables (z, y, ). Letz = X(8), y = Y(t) be the equations
defining the optimal trajectory of the rocket. Along this
trajectory, we define a vector called the primer having com-
ponents (u, v) satisfying the equations

aof aq
“+"bx+"ax_
............... (1]
tadl i
vy aY

It is shown in (1) and (3) that over an absolute optimal

“track, all motor thrusts must be impulsive in character and,

in addition, the following conditions must be satisfied:

(a) u® 4+ v? < 1 at all points.

(b) (u, v) are the direction cosines of the direction of thrust
at each junction at which the motor operates._

(¢) (t, v) are continuous over such a junction.

(d) A = uf + vg + Xu + Yv is continuous across a junc-
tion. '

(e) 4 = 0 over that section of the orbit of transfer w here
the attraction of the planets is negligible.

The above conditions were obtained on the assumptmn
that we were free to choose the junctions at which impulsive
thrusts were to be generated to suit ourselves. In the case
under consideration, this is not so, and a reconsideration of
the argument of (3) will show that, if the position of any
junction is fixed at the outset, condition (¢) may be waived at
this junction. We shall not, therefore, require this condi-
tion to be satisfied at either of the junctions of the present
problem.

Over the hyperbolic trajectory of departure from the initial
circular orbit, we shall neglect the effect of the Sun’s attrac-
tion. Let uo/ro? be the attraction per unit mass of the planet
of departure at a distance 7 from its center. Let (e, lo) be
the eccentricity and semi-latus rectum, respectively, of the
hyperbolic orbit. Its polar equation is then

fo
To

] e COR P n v s 2]

where o is measured from the apse. If (U, Vi) are the
components of the primer in the directions of the radius
vector 7y and of the perpendicular to it, respectively, it is
proved in (4) that the appropriate solution of Equations
[1]is

Uo = Po Ccos ﬂfa + (Qu + H.oro)fn sin #fu ........ [3]

o«




Vo = =Posin o + (@ + Holo) (1 + e cos o) +

Ro — Py sin oy + Hy cot o
1 + €y CO8 \bo

where Po, Qo, Ro, H, are dimensionless constants of integra-
tion and

..[4)

1 1
e e [ S—— 1 -
Iy = Srrea , tan Vsbo — oo + 10 cot 1/y o
Geg? /l’o -1 :
T tanh- (‘ i tan '/ \lvn)
‘:08 : __—_H.ill &o FE 5 [5]
(e — 1)* 1+ egcos o

An impulsive thrust is applied at the apse in a direction
at right angles to the radius vector. Hence, by condition (b)
above, we must have Uy = 0, 7y = 1 at o = 0. This leads
to the conditions :

€y .
-~ P l); Hgm Qi Forashas 6]

1+n“

It should be noted that ¥, = 0 makes the expression for I
indeterminate. We must accordingly let ¢ — 0 in Equa-
tion [5]. : '

Let u/r? be the attraction per unit mass of the Sun at a
distance r from its center. Let the polar equation of the
transfer trajectory, over which the attractions of the planets
are negligible, be

—

= Lk @ BOB v s e [8]

-

where  is measured from perihelion. If (U, V) are the com-
ponents of the primer in directions along and perpendicular

to r, respectively, then, as shown in (4), since A = 0 (condi-
tion (e))
U=Pcosy +Qesiny............ ...[‘.]]
- P
V=—Psiny + Q1 + ecos y) + e ,p < 130}
1 4+ ecos ,p

where P, ), R are constants of integration to be determined
later. These equations must be identical with Equations
[3] and [4] where the hyperbolic trajectory merges with the
transfer orbit. The primer components being solutions of
second order differential Equations [1], we can ensure this
by equating the values of Uy, Vy and their first derivatives
obtained from Equations [3] and [4] with the corresponding
quantities obtained from Equations [9] and [10].

If ¢o is the angle made by the direction of the asymptote
of the hyperbolie trajectory of departure with the perpendicu-
lar to the radius vector r drawn in the sense of ¢ increasing,
it is shown in (1) that the components of the time derivative
of the primer vector as computed from Equations [9] and
[10] are

(S sin ¢ + T cos ¢o)yf along the asymptote. . . . . [11]
(=8 cos ¢y + T sin %)I.L perpendicular to the asymptote. . . [12]
where

Psiny — R .
B o Qs [13]
Resiny — Pe — Pcosy
(1 + e cos ¢)?
Consider now the form taken by Equations [3] and [4] at
a great distance along the asymptote of the hyperbolic orbit.
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T =

e, o !

At such a point, ro — © and hence cos ¥y = —1/g

sin Yo = (e? — 1)"/2/e,. Thus ¢ does not vary w:tht.,lrl_:
hence

Us = Holveo sin o = Hyleg* — 1)1k ... .. vul§

The first two terms in expression [5] for I, are constant
hence make no contribution to f,. The last two terms }bf
come larger however, and hence must be dealt with separatel; - I
Differentiating these two terms with respect to t, we Obtm

R

e(e? — 3 — 2e; cos )

(e — 1) (1 + epcos yo)? l“,

¢

Since cos Yo = —1/eo, and in view of Equation [2], this |
be written #

e? l
MR s

But re? ¥ is the constant velocity moment of the mclm}
about the center of attraction and is ace ordingly equal ;..

(uolo) 'z, Thus

It now follows that, at a great distance from the planet
departure

|

— i
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Now consider Equation [4]. It may be shown that &f
cos ¢ — —1/ey, Is(1 + e; cos ¢y) — a constant. It follow |
that the only term which makes a nonzero contribution t !
Vo when 7 is large is _ i
Ry — Py sin ¢y + Hg cot ¢y ﬁJ;

B O [ i

Referring to Equation [2], we see that this may be writteni |
the form

1 : i
¥ (Ro = Py sin yy + Hy cot yo)ry = i
1 (ec? — 1)‘/! 1 £

| Ry — Py ———— —Hy ———— | .. [A1

1.,[ e * (et = 1)'/'] N ;

when ¢ = cos™' (—1/e). Differentiating with respect h-i
the time, we obtain _
T (e* — 1)72 1 ] .
R-»P—-——-————-——H—-—-—T'..,ﬂ,;

Vo = fo [ o o . o (e = 1) fgo o g

But # is the velocity of recession from the planet of depar-

ture. Hence ’
= [uoes® — l]ﬂullh ii
and ?
P ;.ml/ 2 oz t’a 1 yii &
Vo = f'h [{o(eo p— ;) - - Hg ‘.,.[-—l: ;%
Equations [19] and [23] give the components of the tin |
derivative of the primer along and perpendicular to !
asymptote of the hyperbolic orbit when the rocket has =
ceded to a great distance from the planet of departurc |
Equating these quantities with the corresponding component: |
given at [11] and [12], we obtain the equations 1{

ARIE] 3
(S sin ¢ + T cos %)M:/, O

J, /1

(—38 cos ¢ - Tsmqbo) o = Ro(ee? — 1)/2 -

et =1

€

- Hy.. I
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§Bt1t- w0 = (eo + 1)="2 X angular velocity of the
-cket in the circular orbit about the planet of departure

! ud hence is large by comparison with , the angular ve-

!ty of the rocket about the Sun at the commencement

i the transfer orbit. We shall accordingly approximate
Jquations [24] and [25] by the equations

i gt — 1

Hyeg*
= Ru(ey? — 1 ' SN - i
(t’o’ i 1) 7 C l’D(t’o J' 10 5z

— H, = 0..[26)

i
i
! ylving these latter equations in conjunction with Equations
| )and 7], we obtain

Pu=k‘u=Hg=0 QQE'

¢ Thus, from Equations [3] and [4], at a great distance from
¢ jeplanet of departure

v —1 '
Us = 4/ - Vo =0l o . [28
AN 2
i This implies that the cornponents of the primer, along and
wpendicular to the radius vector r from the Sun, at the
- sumencement of the trajectory of transfer are

g

TR ————

R ——y

I |

, s e
: ke Py

sin ¢y V = ‘;eﬂ cos ¢y. . .. [20]

80+].

; s

? Pcos ¢ + Qesin y = ‘,":_:_i P 30)
F-Psiny + Q1 + ecosy) + }f;f——%’

E ‘/Z: -I_~ :coa % ,‘[31] .

dere ¢ takes the value appropriate to the commencement

“ !the orbit of transfer. :

i- The transition from the transfer orbit into the hyperbolic
; <bit of approach is dealt with similarly and yields the con-
£ dtions ¢

? Peos ¢’ 4+ Qesin gy’ = ]‘i‘.“_ 80 i viwns [32]
; ‘ e+ 1

: R — Psin ¢’

; sin g’ 4+ Q(1 + € cos ')+ 1—;*;—50—1::—;' -

‘_:L- e — 1

i s ¢ . [33
3 ‘)61 2yl | ROB #i<- 4]

- 'leing the value of  appropriate to the end of the transfer
- “Uit, ¢ being the angle made by the asymptote of the ap-
ich orbit with the perpendicular to the radius vector r,
- wle being the eccentricity of the hyperbola of approach.

- Cuudition (d), above, may be applied at each junction,
. “iyields equations involving the constants of integration
¢ virh appear when Equations [1] are integrated over the
¢ wlar orbits about the planets. Such equations do not
+ il the trajectory of transfer in any way, but only serve to
¢ “tthe new constants of integration.

¢ llimination of the quantities P, Q, R between Equations
Y110 [33] now yields the condition to be satisfied by the
“timal transfer orbit, viz.

: gy (2 + € cos ¥) os (v —¢')—(2 +ecosy’)]

!t Eisingu((2 + e cos ¥*) cos (¥ — ¥) — (2 + ¢ c08 ¥)]
Bl + € cos ¢) cos ¢o — Ei(1 + e cos ¢’) cos ¢u] X

. sin (y' — ) = 0..[34]
LW 1956

[ientical results must be given by Equations [9] and [10] and .

where

e — 1 e — 1
E, = = E = R L o 35
4 ‘/Co +1 : \/el +1 %

Let (ro, r1) be the respective distances of the planets of
departure and arrival from the Sun at the times of departure
or arrival of the rocket, and let (6, 6,) be the respective longi-
tudes of the planets at these instants. If 4 is the longitude
of perihelion on the transfer orbit, it then follows that at the
terminals of the transfer orbit

o= Gy oy o m oy (36]
and hence, from Equation [8], that

l
=osr] RS () = )i e [37]
To 5
{
— =14 ecos{th = F)icinsiiiiiveis [38]
r

These latter equations permit us to write the condition [34]
in the form

o
<1

E}-u

l {
~ sin (8, — 6) cos ¢y +[(l i i)cos(éﬁ — ) --(1 + —)]sinq‘a.
To o T

. l
- —=8in (6 — 6) cos ¢, —[(1 -+ E)(309(191 — ) —(1 - —I-):}ainq);
o i To

... [39]

If wp is the velocity of the rocket in its circular orbit about
the planet of departure and relative to this body, its velocity
at infinity on the hyperbolic orbit along which it leaves the
planet is wo(es — 1)/2.  This velocity must equal the vector
difference between the velocity of the planet in its orbit at
the time of departure and the velocity of the rocket relative
to the Sun at the commencement of the transfer orbit. If
Ao is the semi-latus rectum, e is the eccentricity, and v, is the
longitude of perihelion of the orbit of the planet of departure,
it may be shown (5) that this leads to the conditions

wo(eo — 1)1 cos ¢o = p/1 (11 = NN /re. . .. .. [40]

wo(eo — 1)'/* sin ¢y =
B Ny Tt
u'/? I:ITA sin (6 — v) — g,—hsm (06 — =) :l . [41]
Whence, eliminating ¢y, we obtain
e? &? 2ee

we? (e — 1) = g [? 4= N Gr—=yi) =

1 1\: 20'/n" }
(=) (1 +255) v
as explained in (5).

The following equations may be found similarly

wi(er — 1)/2 cos ¢y = u' /XNt — 1Y) /ry. . (43)

wy(e; — 1)/ gin ¢ =

1 . G ;
m /1 [1:—:/2 sin (&1 —_ '}‘1) - 17’ sin (8, — '{)]- . |44]

e g2 2ea
w?(e— 1) =pu [:-I- - N ks (y = 1) —

41 1 \2 2{‘:’:}\11/:
= — .. |45
(tl/‘i )\11/’) (1 & n )] £ }

Eliminating ¢, and ¢, from the condition [39] by the use
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of Equations [40], [41], [43], and [44], we obtain it in the
form

Jao? (co + 1) Lo
‘Hl’ (e + 1) Ly

y

where

P
Ly = = (I'* = \/*) sin (6, — 60) _

Ty

+ [(l + £) cos (6, — 6) — (l + i)] X
ro g}

[[E?, sin (@ — v) — i?}, sin (6 —_'ro)]

Loy 755
L= (W2 = 172 sin (6 — &)
L8

= [(1 e I‘) cos (8, — 6) — (1 1 lf):I ~
r n
I:k:_:/' sin (6, — v1) — I‘Efr o (= 7)]

Equations [37], [38], [42], [45], and [46] determine the
five unknowns ey, €, [, €, ¥ and hence the optimal mode of
transfer. These equations are easily reduced to one condi-
tion, since Equations [42], [45] may be employed to eliminate
¢, and e; from Equation [46] and then, solving Equations
[37], [38] for I and e in terms of v, these quantities also may
be eliminated. We are left with a single equation for v which
must be solved numerically.

n.

- The orbits of the principal bodies of the solar system being
very nearly circular, the simplified forms taken by the equa-
tions of the last section when it is assumed that the orbits
of the planets of departure and arrival are exactly circular
are of some importance. In this case, ¢ = ¢ = 0 and Ay, Ay
are the radii of the planetary orbits. Alsor, = X, 11 = AL
Thus Equations [42], [45] can now be written

3 Transfer Between Circular Orbits

(- enne
To Ty
[(rg)emm-m-i- e
1 +—)Jeos(ty—8)—1— —|esin(s — ¥)
Ty T
(- Tn-n
ry Ty
[(1+5) e
1 +—)cos(p—80)—1——|esin(8 — ).
i To

This latter equation, together with Equations [37] and
[38], specify the optimal trajectory.

If the rocket is to be transferred from a circular orbit just
outside the Earth’s atmosphere into another close to the sur
face of Mars, the following values must be substituted into
Equation [49]

re = 1.497 X 109,
g = 1.33 X 10%,

= 2.280 X 1013
= 7.912 X 10%, wy = 3.557 X 108

the units being cgs. In this case, we have solved Equation
[49] for ¥ when (6, — @) takes the values shown in Table
1. The corresponding values of [ and e are also given, to-
gether with the net characteristic velocity V' (km/sec) of the
maneuver and the time of transit T (days). The amount

e

o

e .

A

S

T —

Aw by which the longitude of Mars exceeds that of the Barth -

at the instant of departure is shown in the last column.
When 8, — 6, = 180 deg, the optimal transfer orbit i
tangential to both the planetary orbits. This is the wel-
known “Hohmann’ case and corresponds to an over-ll
optimum.
For values of Aw other than those within the range of the
table, the characteristic velocity is far too large to be practi-

UL S ———

cable, or more than one complete circuit of the transfer orbit

must be made so that the waiting time is greater than that
which must elapse to bring Mars into a more favorable position,
There will accordingly be periods during which transfer he-
tween the Earth and Mars is not practicable. This phe
nomenon has been discussed by Preston-Thomas (6).
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