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A bound particle moving in the gravitetional field of a "stationary" celestial

3

object will have an elliptic trajectory. Its period P is given by P = 2r/ -3:—-

where W = GM; G being the gravitational conétant, end ¥ being the mass of the

celestial object setting up the field. It is well known that if two points, P and
Q, lie on a general conlc trajectory, the time required for the particle io traverssa
the. arc I:_é is dependent only on the semi-.major axis a of the conie, TP + Eﬁ

| where ¥ is a focus of the conic and the distance between P and Q. lLet us denote

ry = .1;'-5, r, = “Fa and ¢ = PQ. Consider the problem of finding an ellipse passing

through two specified pointa, P and Q, and one specified focus F,

Now the definition of an ellipse can be stated as the locus of points the sum of

whose distances from two fixed points {called foci)is constant. We may assume with-

. *
out loss of generaliiy that ,or Thus if F is the other focus, it must satisfy

}..
S B
the equations PP + ry o= QF 4+ T, 1

i — *
..; and QF = Za Ty P will be & second foous. These points are easily obtained by

3 . )
= 28. Conseguently, if PF = da ~ 1

considering families of circles about P and Q with radii 28 - r, and 2a - r,,

1 2
respectively, The intersections of these families determines a set of pairs of . x
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points x ,rf*"*) each of which cen be tize second focus, Consequer;tly, there are two
differsnt ellipses which satisfy the conditions of the problem, It is clear that
if the radii 2a-rl, 28.-—:'2 are too smsll, the cirecles will not intersect. | Hence,
there exists a minimum value of a, say 8 such that the cireles intersect in
only one point. Since this intersection must occur on 5@; we have Eam - T

1
+ 23::2 - Ty =¢. Thus letting %(rl + T, 4+ ¢) = 8, we have Zam " %{rl + T, 4+ Q)= 8,

2
Since the kinetic energy of the particle at P of unit mass is u(%t— %é) where
r = FP, it is clear that this will be minimum if a = a. Thus the unique ellipse,
having a semi-major axis of a = a.» can be called & minimum energy ellipse.
It can be _shovm {see R. Battin, The Determination of Round-Trip Planetary
Beconnaissance Trajectories; ARS Journal/Space Sclences; pages 550~52) that when the

: : x
vagant focl is at ¥ , the time T required for the particle to traverse the elliptic

™
are P q is

Iw

2 [(a-sina) - (8- sin )]

. - ~g
where ain‘%'= V'%;, sin‘g'm i %Eg + If the vacant focus is at F , the time T
&

(1) -

P

%

3

Pl

can be expressed
(2) T = P -

P [(a~.sinu)+(ﬁmsin.§)]

g

If wa set x, = 1 - ~§~, x, = 1= 2=C apnd make use of the trigonometric identities

1 a
A wl
sinfg* = V¥(1 - cos 8) and ain(coa’lx) = \/1 - , cos™ly = 7 - sinx

equations (1) and (2) can be expressed as

3 e - P
(3) T =\ ( 1-x22 + :J:in-:t x, - lwle - sin”l X, }

b
5 _
(4) T - -;1';-- {n+ Vlwxzz + :sirz"]'x:a + V1~x21 + sin"lxlz
If aw & the two ellipses are coincident and T = 'EE". This can be shown analytically

=N
by substituting a = a_ = 38 in (3) and (4) noting that in this case x; = 1 -

1

m el

=l rofo

and sin"l(-l) = -sin 1= - %. Thus it is clear from (3) and {4) that Tg
where the eguality holds only when a = a . Iet the expressions on the right side of
equations (3) and {4) be denoted by f{a) and £{a), respectively, so that T = f(a)

and T = £(a). Omitting the details, one easily finds
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1= X

| A

® 5) a4 _ 3 £a) , 1 S T+ %,
_ da = 2 a T o (8'"0) 1+x le-xl T

-~ — 44Xy

(6) %ﬁ-w%%glquw}“ E(suc)\/i:xz+s\f‘:‘ﬁ§ | |

@ x 14

(m L3 2, 1 E(S_c) 1% A _s-c 3 }

.daz 4 s @—; 1+x2 W1+xl \/1 -x2 '\fl-xza

1

Now it is clear on physical grounds that f{a)> O and f(a)> 0., From (5)
ft{a)~» -~ o0 ag a-> & and from (6) T1(a)=>+ o as a-» a . Hence the two curves
(T, 2) and (T~ a) are joined at & = a, such that the total curve C has a well
defined tangent line for all values of & where f and £ are defined (i.e.. a < a),
In order to simplify an snalytical investigation of ¢ let us consider values of
a 1in the closed interval a <8 < Ty o+ THe Since &, = s = f}‘(rl + Ty c) and

¢ ¢y + 7T, this interval can be expressed as + (rl + r2) {ag<r +r, From

. equation (6) since 8 = ¢ = 'ir(r1 + T, - e) 20 Fr(a)> 0. Thus this upper half of
C increases with a, For the lower half of C where T is given by £{a) it is
2 .
convenient to consider i‘g’“ . Consider the expression
da
1 - x, 1

(8) 1+ ‘/1“‘;?

/I-xl 1
1+x1 Jl"le

8 - C

Since x ==2-§' and %, = weobtainSma(l-xi) andsucna(l-xz).

1
Thus (8) may be written as

[1-x e
1-x, .1+ \/ 1+x, lx, iz, - Jl-x, Lexy
= / 1 I NV e 11 Vi, i
o T Vi1ex, faxg | VIR

_ _ 2
}.-»xz 1..;:2..}, Jx 1+x1 %y 1-X2 Llox 1

1

(9) = =2 . : - - 2. :

L 1 - - 1m
1 % 1 Xy 1 [““‘““‘1_X2 1 +x, Xy Xy (-“—-“1"122
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2 2 i
2 o : & 2 e [
Now 1laxy = 1 {1 - a) = 1~(x1+&) - 1..:;1-.&(2::14» &).

4

_ r, T, + O r, + T

1 a a . Hmc@
T. + . r T
max (2r, +2) - 222 H,z =1, wn (2 +9 =222 2 .0
1 2 a ‘1‘ +r2
2

Thus 2x, + ﬁ-g 0 and we conclude that

(10) \/lnle2 *\/ ---::l“2 51

1= xy2 (}...xf) - Sox, +9)

a

From 12 - i(rl + rz) g 0 we write using above resulis

i 8-c 8 _
=2~a(23-c) =1l-"" +1-2 = XX

=
h'4

. 2 2
. :1:2“::1?_:(:1:24»:c1)(:!t2~-x}“)=~—-=t_2--1':1

e x2(1 - 12) g xl(l - xl)

R S

xI l - xl

2 1

With this result and (10) we obtain, since (8) is equal to (9), the important

inequality

1 1 l-xl 1

-u-xz .
1+x2-(a”c)\‘1~x22 ga EIEI ) 8'¥1~x

(8 - ¢)

which can be then an

| 1-—::2 /1-:: # 85 -
{(s“c)V1+x2 -8 1+x1 +¢1_x2 *\/1.-2}
: 1

* 2

0

IRV

'Ea:pluying this result in equation {7) we find

2 _
£ 50 a <a<r

da° o=
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Since‘%f —% - 88 &—a we may now conclude that the lower half of C for values

of a in am<§ ag ry + ré' will be convex from below., Thus the curve € will take on

the general shape of

'.r“' /‘/

2o )= == =

w
Y
-

-Suppose & particle is moving in an elliptic trajectory about a gravitating body of

maas M (i.a., the particle is in free fa}i motion but bound in an orbit about the
body). If one specifies two points";i = OP and .;2 = 56; which lies on the tra-
Jectory, and the time T taken for the particle to pass from ;; to ?;, one--and only
one~~trajectory exists which satisfies these conditions, (provided T is greater than
some minimum value To). We consider two possible cases:

(1) m<r(a) (11)  1>7(s )

If T<’T(aw) we consider two sub-cases:

(a) T0a)>T>Mr, + 1)

(v) t{'(rz + 1)) >T
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In practice, it turns out that case (i) is more important since short flight times
are desirable, Now as & incraases.' the kinetic energy of the pariicle increases,
hence the sub-case (b) above will be unlikely. Consequently, we consider a method
which, for case {a}, will ézlways yield a sequence g"k? converging to the desired
value a corresponding to the prescribed flight time T. First, choose an initial
value of a,say asuch that ’I‘(am) >T(ao)7’1‘. -

: 7

L :

[

ta )
>
By the figure it is evident that !
f(ay) ~ T -
e = tan @ = tan{n = @) = <tan g = -£'(ak)
® e
Hence fla } -7 or
fi(a = 8 " &,

k
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fla) ~ T
& - f’faks

{11) L

The sequence [ak3 will necessarily converge to the desired value a bhecause of

the convexity of the lower half of C in the interval a_ g 8 : T, + T, s

case {b) i irue, one may still apply {11) if it is found by investigating the sign
of £ in & neighborhood of a that the method ylelding {ak§ will be can#ergent. .

In & similar manner, it is easy to see thatl case ii presents no added difficulty

and {11) may also be used to calculate the semi-major axis a by appropriate

gubstitutions.
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We now co@ider the error Ek 41 in the ktl th iterate. Ek .l = fa -a +1|.
If {ak} is convergent to a then the following argument holda for either case (i)
or {ii). In dealing with case (ii) one replaces f{a) by f{a), Now by equation

(11) we have ela) -1
e = !““ﬁwl’ = i“"’“k * T?k(i;)'“l

But we may write

2
T = £(a) = £(a ) + (a-a) £'(a) + %’;‘* (awz ) £'(a) + ...
T e t(a) + (a-a) £(a ¥Ha-a ) £1(( )

where ﬁk lies betwsen 8, and a., Hence

or

T o f’(ak) 2 f"(c )
Tt (a~a,) + #(a-n ) m}{%
Thus ' ) C
. an _ (a o an ) fﬂ( )
By (a-a,) - (-5 ) - " ?'-(;5—

.2
- &) f"(ck)
o) | my

Hence since ak-*%a

I -]

Since ¥ %:—%3' ‘is a_conatant, this shows that the error in 8.1 is approzimately
propo.rt.iona}. to the sguare of the error in a . Thus we should expect rapid con-
vergeﬁce.

After determining the semi-major axis a with sufficient accuracy, the trajectory
will be completely determined by finding the corresponding value of the eccentricity
€. This is obtained by meking use of the depenfience of € on a, set up by the initial
condition of. requiring ¥ to be a focus and P and § to 1lie on the ellipse. It can

* ~ %
be shown (see above reference, page 549) that if the second focus if F or F

- the corresponding values of the latus rectum are given by
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2

1 = [i@-(swrl) (s~r2)] sin® 9..‘2.:.?.
T . [i%(smrl) (s~r2)] 8in’ E—-—;—-ﬁ

respectively. Making use of the relation 1 = a{l -€ 2) and introducing Xy snd

X5 defined above, these equstions can be written as : s
{13} € = {l - g*é* {8 - rl) {g ~ r2) {1 -~-xx + Vix®. Viex®
c 172 1 2

(14) €

{1 - 'g“g (s - r) {s=r) (1-xx, - 'Vfl-le ‘/1-::22} 1

Thus if the given value of T is such that T >T(am) then after determining a with
sufficient accuracy by (11) with f(a) replaced by f(a), the eccentricity € of the
elliptic orbit iéa'given by (14}, 1If T< ’l‘(am) one uses {13) after finding a by (11).
Before considering hyperbolic trajectories, it is important to know i{hat a
solution of the above problem (having initial conditions F, ?1, _?2 and T prescribed)

exists, Clearly if T and ?}_, T, are chosen 30 that = is sufficientiy large then,

2 T
e i
since maximum VI > %where V is the velocity of the particle, the particle may
be reguired to have a kineiic energy such that it cannoi be in a bound state, Now
since this kinetic energy is given by l.t(-i‘; - %-;), if < T(am) then as a—> o the
Y

path P Q is traversed such that lim f{a) = T exists, and that o< T < f{a)

Bed 0O . e o
for all a i a<o, Consequently, if the prescribed value of T is such that
T (___ 'I.'o, no elliptic trajectory is possible and the solution of the above problem
does not exist, This critical value '},‘o may be obtained by employing & device known

as L'Hospital'’s rale, This rule for calculating limits states that

lim 3&3} oo lim Frlt)  4f F(E)—»0 as t—>6 and ()0 as t>t .
tt  GlE) T st Gt
Q o
i

1f we make the change of variable % = a° , f(a) becomes
T _

2 -l 2 -l
tj\f; Jl«-xz + =ain X, - l-xl-sin xl}
where x. = 1 - st° and X, = 1~ (swc)tz. Hence as a-wy 00, t-> 0 = t_ and we set

L
i
Pt) = Vl-xzz + sin"l x, - ’1-x21 - sin"}‘ xy

alt) = Vi ¢
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Thus Mm T  lUm  F'(¢ - 2 (s~c) 1+x + 2 ‘“V

&P Y g {g) T
3 Vot

By a re~application of the rule we obtain

lin ? _ lin ...L.{..::s. 5y [y @} o i Vi
Viex, vi'%

a—»m 1+
— -0 3\/'1: xz _ ét \ r—-x @2 1+x1 &t
lim \ -4{s-c) ¢ T, AgT v
-0 "e T~ 2
3Vi(1x,) Vs, 3yi(14xy) Viex®,
Kow lim X, = lim x, = 1 hence
ko 4] t—=0
2 2
lim T ~2{s-c)  lim S 28" . 1im t
B 0 " tero o . o
3 ‘/E 1-x2 3Vu 'Il;-~_-x21
1im t
Let L.l = emo e . FThen
\fl-x
1
‘!1 2
L . lm 1 _ lim *3
1 te30 _&_(1“]{2 )...% (<2x.) dx}. t-—»o0 leSt
i . 1 rerr——
4t
\/ 2
L ue Py
T 28 t—?o t - 2sl, -
Thus we obtain Ll = ;“}f:' . An & gsimilayr manner we find letting
\123 N
Iy = 1im
2 ot
L, = ==
@ V2(gwe)

Consequently we obtain
2 2 :
T = Iim T ..._2_...3_,....;..... _%,.(g“{:) . 1 . b

Vi Ve(s-e)

.o, (15) T, = B (’{33« \{(3»::)3)

Hence if the prescribed T is such that T ~—g\/-:_ (Vao. o V(s=c)® ) an ellipticol
T3y

trajectory will be impossible.
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We turn now to the case when the prescribed value of T is such that an elliptic
trajectory is impossible. Thsat is %0 say vhen T é'To. :Iﬁ this case, we must conw
sider hyperbolic trajectories, The trajectory will be parabolic Af T = TO.' 1%
will be shown that when the semi.major sxis & of a hyperbolic trajeétony {(with
vacant focus F*¥) increases indefinitely the corresponding time of flight approabhes
.To’ and the path becomes parabolic, We proceed ss before specifying P and Q %o
lie on the path with”?1 m.5§, ?; - aahwith 0 the center of an attractive body of
mass M which, of coursge, is at & focus F of the h&perbolic path, Since the fleld
is atiraciive, ? end Q must both iie on the concave branch of the hyperbola with
F its nearest focus. Hence if F* is & second focus

s W

e
P -y = QF - T, = 2a,

according to the definition of & hyperbola which we take %0 be the locus of points

the difference of whose distances from two fixed points (foci) is constant, Thus
' J— 2 ...,..N‘* . 2

PP = 2B + rl QF = 2a + ry

Hence the vacant foci can be described as the intersection of families of circles

about P and Q@ with radii 2a + ry and 2a + Tos respectively,
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These circles will intersect in two points (FT, 'i‘:). Unlike the elliptic case, the

minimum value of a = Q. In this cume one vacant focus 'f‘; coincides with ¥, The

other'f': is such that PQ bisects ﬁ: and hence the path é'é' is PQ and corresponds

to an infinite velocity. The flight time T in this case must, of course, be O, |

The path corresponding ’co%: = F is FF to FQ, Theme cases, of course, are

unrealized., Hence there exists two possible hyperbolic paths having the same semiw

major axis a corresponding to the vacant foci FT or ‘f‘f. ¥e obgserve from the figure

that the path Qith vacant focus at F,* has greater eccentricity € than the eccentri-

oity €of the path with vacant focus at ¥ . | e, ¢
The time reguired %o traverse the path ﬁ vhen the vacant foous is at 'I"“)'t or

*
F was expressed by Battin as

T m@ [(sizlzhama.)w(sinhﬁ*-ﬁ)]
2

T o= ,i“ [(sinha-a)+(sinh5»i’)}
vhere sinh %’- = V%;* , ainh% e %‘f* » corresponding to paths having vacant focus

L3 o .
at P or F, respectively. Thus sincey'-g-g >0 ng’* > 0, a, B, 20, Also since
in this case sinh a > a, sinh P > B, it is clear that T £ T, which we expect by

observing the figure, Employing the identities, sinh 4x = V¥{cosh x-1) ,
2
'coahzx _ sinhzx = 1 and sinh (cosh‘lx) = V¥x -1 for x>1, the above expreasions

csn be written as

3 .
T o= 3~ Vyzlu 1 - coah'iyl - Vy22- 1 + cosh™t yz]

@
5 [
. V;g 'Jyzl- 1 - cosh']' yy ot Vyz -1 - coshﬂl yz}
8

=}

2

where ¥y = 1+ TR PR 14+ 28 . Let the right.hand sides of these equations

be denoted by hia) and B(a), reapectively, Thus

' 3 [z~ s
(16) n{a) = \/;‘i:‘“ [ yz 1 - cosh™ ¥y - yz- - 1+cosh™t Yy ]w' T

|-

2
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. (17) hia) = \/i‘*[ 21«»1 - cosh*lyl + Vygz- 1 - _cosh"'lyz]w T

Omitting the details, we find
. nla' ‘ ‘ _{g_'_'f_ ¥ =1 .
I RECE L R L
dh(s) ol s 1 - ‘/YZT’:{ JY -1
(19) s m h (&) = g't —&-)' + \/;; {-(s-c) 3’24'1 -8 ;i-;f

We now conaider the limits of the equations a® a0 and a~*, In doing this

we shall make use of the expansion for cosh™1x,

cosh X = 1log 2% = Tt =TT ot L L,2.2,.0 v (x21)
| 2 22T T2 6 __
lim h{a) = 1im{a Va - Ja+8) . j-f 1im{a\/a (coah"'l;,v2 - cosh'ly )}
8-> 0 a _ 1

- '}.im{a\/; '\1174-9%9)2-1 }
f

¥
. = 1im\/a_‘V(a+s)2-a2-}+ nm{a\[; logy—a
| 1. 1 1 y,3. 3,11 1
A sl b - Ao wral o LR i
3’1 Y2 y_l Y

- lim{\[; ‘\/(a+a-c)2»32 }

¥

m O 4+ 11{11{&\/; log *f*l«» 0 since
1
¥y, o= 14-'2-*-\709 and y, = 1+§*§9-->m 85 8—>0
¥,
lm -4 = lim 1+2%
a g + 8 « o g0
a~wo vl By s, m 1Am e o SS=ho, Hence
8 a+ 8 8
1+
1im hia) = 0 as expected,
a0
From the above resulis we may write _ %
® lim B(a) = ..um{a\/; (10g 2 3, + log 2 7))} "‘
80

wlim{a\/a- log 4 ¥y Yo ] |

--_lim{a \/; log Y ¥ }

"
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Now lim y,y, = Mufl+ ) {1+ 52 a } é.(ﬁ) . Hence
1im hia) = « 1im[ \f- 1ogm}n 1111:{3\[— 1oga }
P

= 2 1imi\fa~ 1og'a.} But a-—-al - 88 a->0. Consequently

1in hia) = 0 as expected,
a—>0

We now find lim h'(a)

8 —¥0
1im h'{a) = %im %(ﬁ)- + Z.im{*l'm E {g-c) T - @ 3 ]
B> O 8-y \/a-u ¥a Y1

H

2 {ﬁm{ﬁ [V I cogh-lyl -V yz?_-}. + cosh"lyz }]

L2 B
fr-1 }
. 1
15.1:2{ (s e) y+ -8 y1+1]

+ -

-2 [u \f:( L—-L“-—- o Mase)® - & ) |
a
+ lim {8 -~ c-a). since

1
Ve | v -1

m  Va (cosh*ly - .cosh-ly) = O as shown above and -31,
2 1 Yo + 1
By O 2
'ylml
-1 &3 Aa->0
y2 + 1
2
) = (- (o) ) + = )
. lm ht{a) = 1im 8 = {Bug 4 " (g ws
30 Ve Ve
= %j 1im & = +®

a—yo Ve

Since lim h{a) = 0 and h{a) éz(a), lim h'{a) = + oo implies

a-—n0 By O
lim ,ﬁ‘(a) = 4+ 00
B30
We now compute lim h{a). Let% = &, Then
8% 00 ' _
lim hia) = lim {ml o { V yzlu-}. - cosh"ly:l - Yy 1o+ coah”lyz
B~ 00 t—0 \(E
Employing L'Hospital's rule with

P(t) = VY21~ 1 ~ cosh~l v, ~ Vyz 1+ cosh™t Y,

2:&-

I}
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at) = uVe
e o
g 2 4 ‘@r"._,z, &
lin n(a) = Ma gt _ ,, 02 23’3. rr e - ) 2Y2 a
Bumedrry t-ro 4G -
: At 3 48
aya
\/——- it
= 1lim(2s —-3=--+1 - 2{g~c) y+}, ..Z.‘./..__
- 2 B ZVITAE -
a
- un i /A I
lim o1 28 ﬂ 8-c) )
LGVt
IO T4 1 0V Wil L2 Sl S TR \/3’-2‘*1 ~¢”2"1
: y1+1 dt ylwl yl-fl yz-t-l dt yg»l yg+1
| 3V
= lim 23 + ( 253«-0221: (%’T‘-—— ) '
3\/" yl+1 \[2 v, +1 ¥,-1
1 { 2., $
= e 428" 1im w2{swc) lim ——o )
3&  tr0 ‘/y21“1 P o Vy22_~1
= A gzsa L, ..2(:-;“::)2 L,
3
where Ll = lim & , I’2 = lim £
&30 y21__1 a-20 \/y22“1
. 1
LI L}. lim 2 ‘.% y}.
y°,-1) a3y
N S
coup 2 Tt 11
= ye2st © 28 t T 28 L
1 A 1
. i
* » L]- =
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In a gimilar manner we find L2

1im hia)

g Y. 3

. 2

3

lim nfa) = '3.‘

8 iy

We now caleulate lim hia). Le
B =00

apply L'Hopital's rule with

16 TECHNICAL MEMO #312-118

Hence we obtain

1
B V12(5~05 .

{ 2° _ 2(sc)’?
Ve (Ve yelece)

e - Vel

or

Vau

3

{t us choose = B

+ so that as a~%w. t.p0 and

Foe Vyzl-wl - cosh” yl Vy©~1 - cosh™t ¥,
T -8
Thus
lin h(a) = lim E = 1im ?2
a~3 t>0 G tero oy
dy dy w v dy
1 1 1 2 2 1 241
= lim $H(y° 1~1)2y - + Ky " -1) 2y - L.
at 2 2 - 2
t«,o{ 1 mﬁt d% \/‘E ldt 3ﬁt
Y- I - .
dy dy.
~ 1 2
lim hia) = 1im [ == s
2300 b | 4t (z,r1 -1} + gt (y2 - 1) 31 ,
J - [F th 2
yzlwl y22-1 \[_
. Y1 Yol
= lim 1 2 1
Lo (28 yl«i»l + 2(s-e) y2+1 3
' _ ~% dy
Y y1+1_ (-7 21 - Yyl y}_‘i'l)
= lm 28| it
t—»0 ¥y +.1

+

Vi1 (v, )t dyz

){\/y‘“g (y,-1) “Yz

]
J

y2 +1 J— :
o
= ii‘;‘c \/5’1'*1 \/3’1‘1 (swc)dt R /Yz /
yl+1 ¥y +1
= lim Zszt ( 2 ) 4 2(3—-(:}21: ( 2 ) 1
t-r +1
Y1 Vyzl..l v+l Vy2 -1 3\/?1-
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Now we know lim ¥y, = iim ¥y = 1. Se, recalling
t—ro =0

1im

£
= and L wm 1im e we obtain
POV -1 o2

2

1im hia) = i_ stL + 2(15;..(:)‘?1.2
a—y 0o 3/-

: @ (Voo + V(ao)?)

Let us define ’fo . T (‘/;3 + V(s»c)3) so that
3yau

lin ha) = Tt
8~ 00

Hence we conclude that if a prescribed value of T is such that T> 'i'o but T ?o’ i,e.,
To( Te ’Z‘o

two trajectories are possible; an elliptical trajectory and & hyperbolic trajectory.

Now clesrly as the distance between P and Q approaches zero, (i.e., as c->0),one

would expect 8ll flight times to correspondingly apprda_eh zero, That this is pnot

trae can be seen by observing the expression for”i‘“. ¥e notice that as c—»o

Ford V3, put sinces::%(r + T, +e), a-—-?-i-(r +r)-r Hence

°3\f§§
’J'rii

notice that the hyperbolic path with?" as vacant focus always passes arcund F so that

Vr 3 This should not be too surprising for, by the adbove figure, we

when c->0 the path approaches the path from P to F and F back to P, This can also be
demonstrated snalytically by using the expression for the kinetic energy of ocur unit

mags particle: + U2 m% yielding U - y% . Now the time T required for the

particle to go from P to F is
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Thus the time to make the round trip is

= |
Notice that £(s,) = T(s.) = £(5) = 335 {Yl ~(1 - &=9?
| | )

-

+ sin-l( I I

= 1-(1- 9% - a1 - 22 >}
: 2

2
3
’I'(am) = f(az,,)* %V%‘: ‘%+-2—"§Vss-c + sin"1(~l+~§~9~)

Hence

WM

Now T l = A0 V& an ”FOL = 2— Ve, Thus we may have
et

=0 3y 320

T(am)>"fo when ¢ is near max., or 'Z‘(amk 5; when ¢ is small,

| With thig information and information concerning £', £, h', sné limits as
& approaches limiting values, we can construct general shapes of the graph of T
va, a, |

“"Graph of T va, g

Case 1: T(a_m)< T, Case 2: T < T(am)

T
A . /

Case 104 _
long time hyperbolic-case 1
tla Yl o long time hyperbolic-case 2
‘ C&Ee 2. Tomw o ’ - ”_I B— e —— o -
. l “‘-\....M_m _short time elliptical
¥ I ST,
o s re—" [rev. r—— r— e Do e o cses wmgues cuwswe assuaee e [ — -

E T —_short time hyperbolic

-. . long time elliptical




JET PROPULSION LABORATORY «19~ TECHNICAL MEMO #312-118

The firat step in making & detailed study of possible conic trajectories associated

with prescribed initial values ES s *%, T should be determining whether case 1,

f(am}da; , oOr case 2, "’Z‘Eﬂof f(am), is true so that a general graph may be obtained;
To complete our analysis of hyperbolic trajectories we write asn iteration

method for obtaining a corresponding to 'I',<7i"a

(s ) ~ T
"5 B " h‘iaks
Since Tc< Tfo’ a second h_yperbolic trajectory is posaible if ’Z.‘(TO
ha) - T
ak+l _ ak ’fz'(a})

Thus if ‘i‘o< T(E"O- two different conic trajectories exist; an elliptical trajectory

and a hyperbolic frajectory. For the hyperbolic paths Battin shows that

[i%( s~y y { s..lr2 } sinh2 Faap )}

[+

1

I

it

2
e

* . 4
corresponding to paths with vacant foci F and F , respectively. Since 1 = a(€ 2. 1),

5 [ﬁg’-(s-rz) (s-—rz) ainh® %{a«-?)}

these equations yield

" £1
€ = (1 +-i~§ (s-rl) (s—-rz) (.Ylyz + y21-1 y22~1 -1 j

%’rz (1 + "i-é“ (a«rl) (s-rz) (yl'y2 - \/yzl--l \/yzzul -1} i
Summary of results for ailternative method of determining possible conic paths
associated with prescribed values of ?1,: “1?2, M, and T where “if;. = 'f"f’, r, = ﬁ,
M is the masa of the single _gravitating body at the focus F and T is the flight
time frﬁm P to Q.
(1)  Caleulate f(am) and .'50 to determine general graph of T vs. a by:
Cage 1, f(am)<,{o’ Case 2, ;fo(f(am) (see graph of T vs. a),
(14) Calculate T o to determine whether an ‘elliptical path is possible {if T< T,
an elliptical path is impossible,)

(1ii) Determine whether an elliptical path and & hyperbolic path are both

possible (i.e., if T < 1T <4'I‘V0).




- JET PROPUISION LABORATORY =20~ TECHNICAL MEMO #312-118

\O ’ " {iv) Determine the functions yielding T:

a) if f(a )¢ T use “Fla) for elliptic path

) 4f T ¢ T ¢ f(a ) use £(a) for elliptic path |

e) _if 'I‘°< T ,‘;: T;mhyperbolic path slao exists with T given by n{a)

d) Iif T<T, only hyperbolic paths exist, T = h(a) for short hyperbolic flight
times, T = h{a) for long hyperbolic flight times

{v) Determine a with sufficient acouracy by

Fla) - 7 o '
w1 T P T aF a, ¢
: de
where F(a) is the function yielding 1
error in k'th iterate = - = ’a - & t has the relation
"
~ 4 E I-—{-—%-
. - showing rapid convergence to solution T{a) =

{(vi} Determine the eccentricity after obtaining good approximation of a by
_ 2 2 2 *
€ = {1 - “5{s - r)s - 2,01 - x, + Vi-x 1 Vix 2)}
3

]

’t\)n

for an elliptical path when T is given by T = f£{a), T = #(a), respectively,

T [ +
€ = {1 + 2—2(8 - rl)(s rz)(ylyz + yi-}. y22-1 -1)}
o R 3
€= { 1+ )y, - Vo1 Ve ..1)}

for hyperbolic paths when the prescribed time T 43 given by T = h{a), 2~J

r, )(1 - x V!l--x \!1-—::22)}

L2 200 1%
ol

8 - rl)(s

="h{a), respectively,
(vii) Formulas for sbove expressions:

¢ = distance from P to Q = F@

a M\/;l&rz -2r1r2cose 8 = {PFQ

:::Ezl + ?22 g ? :i'h

12
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T +_r2+c

. _ am’l2 am“%

e 1.8 . 180
X 1 3 *2 1 a
¥y 1+3 ¥p 14----—‘-"-‘l

ey
e
o
S
[1]
%

o

m(VL- _22 + s:i.arf"l:::2 - V_l-x - sin"lxl}
{ R+ V]..-xzz + s:m“lxz + Viex !1 + sin"lxl }

+

e
bty
h2
o
[+
s

I~ 1.
G, i) . 258, ”;““""{(a»c) * /1;1}
1
2 1

_ 8
| a @ 1+x2

~ . T i . o 1l
"'&"": g%ﬂi)—-}-im{(s**C) lxz +Ble
a & & +X +x
,/ 2 -1

1 - cosh yg = 'y 2-1 + cosh Yo

{\? -1 - cosh™t vy 4 \ 2 -;-2 cosn™t ¥,

=

——
-]
S
il

-4
-
. S’
f
o
'i:l“-’?-p

. -1
® CRNETRN 5 (O P i n
y 5. = h (a) < + E(a-—c) -8 o
~ ~ ~ 7~ ¥ -1 ¥.~1
b Te(a) .3 nla) 1. {gwc) Y2 PRPRY 20 T
da 2 & @ y2+3. y1+l
i = GM where G is the universal gravitational consiant and ¥ is the

mass of the body sbout which the conic trajectory takes place.

It is found convenient to use & year ss unit of time and A.U. a3 unit of distance.

rt0,)- (B [/HP im0 T
T = j//g [ﬁ’-m}

MM:is




