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Preface

During the spring .vacation of 1963, the Graduate Academy of the
University of California had its inaugural meeting on the Los Angeles
campus. Sponsored by the UCLA Graduate Student Association, in
concert with the several graduate organizations and divisions of the
University, the Academy will annually preéent research of uncom-

mon merit by graduate students from the various departments and
campuses of the University.

It is the aim of the Academy to bring together young University of
California graduate scholars from diverse disciplines, working on the

same topic from differing points of view, and thus promote inter-
campus and interdisciplinary exchange.

The Proceedings will in most instances be the first published efforts
of these young scholars. But immodestly we would like to note that
of the twenty-six papers originally prepared for the Academy and
included in this first volume of the Proceedings, thirteen have subse-

quently been published in scholarly journals, and two have won
prestigious awards.
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MICHAEL A. MINOVITCH
Los Angeles Campus

The Determination and
Potentialities of Advanced Free-Fall
Interplanetary Trajectories

WHEN AN interplanetary space vehicle approaches a planet on a free-fall trajectory
the gravitational influence of the planet can radically change the vehicle’s trajectory
about the sun. It is possible for such vehicles to take advantage of this influence
by passing the planet on a precisely calculated trajectory, which will place the
vehicle on an intercept trajectory with another planet. Of course, these advanced
trajectories taking a vehicle from one planet to another will in general require very
long flight times. There are however some advanced trajectories involving Mecury,
Venus, Earth, and Mars which have been found to have remarkably short flight
times and low launch energies. Since the favorable launch periods for missions to
a given planet do not occur often, advanced trajectories taking one free-fall vehicle
to many planets are particularly attractive.

The determination of free-fall trajectories to several planets is essentially the
famous unsolved n-body problem. Thus in order to calculate these trajectories
certain simplifying assumptions must be made. This paper is based upon one
fundamental assumption: At any instant one and only one gravitating body influ-
ences the vehicle’s motion. The primary goal of the theoretical part of this paper
is to determine a trajectory in the vicinity of a passing planet which will enable
the vehicle to pass out of its gravitational sphere of influence on a conic trajectory
about the sun which will intercept another predetermined planet. Thus we shall
assume that the missions begin and end at the centers of massless planets. The
initial conditions are given by specifying the order in which the vehicle is to rendez-
vous with the given planets Py — P, — - - - — P, along with the launch date T,
and first planetary closest approach date 7%.

This paper also includes many important trajectories discovered at the Computer
Facility of the University of California, Los Angeles, and at the computing complex
at the Jet Propulsion Laboratory.

Conic Trajectories

The quantitative study of any branch of science dealing with forces, velocities,
and positions (i.e., vectors) in a 3-dimensional space is always most conveniently

done by making use of as much vector analysis as possible. With this point of
* This paper won first prize in the Ph.D. class in a recent contest sponsored by the Western
Division of the American Institute of Aeronautics and Astronautics. An enlarged version is being

published by the California Institute of Technology’s Jet Propulsion Laboratory (Technical
Report No. 32-464).
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view, no assumptions regarding the geometry of the solar system will be necessary;
indeed it will not matter how eccentric the planets’ orbits are or how much their
planes of motion differ from each other. Thus before attacking the above problem
we must first develop a convenient mathematical technique for handling conic
trajectories in 3-dimensional space.

We begin by equating the dynamic force on a space vehicle of mass m with the
force of gravitational attraction set up by the presence of a body of mass M. If
Z is any inertial frame this equation becomes

av Mm A

m}E:HGR’ R

where V is the velocity of the vehicle and 1% is a unit vector directed from the
center of the body to the vehicle separated by a distance E. We shall adhere to
the convention of denoting unit vectors by placing A over the letter.

Since the ratio m/M is very small we may assume that the body is at rest in Z.
We shall take the center of this body as the origin of Z. By setting GM = p and
cancelling out m from both sides of the above equation we obtain

= (1)

The ¢ and % vectors of conic trajectories
By the differentiation formula for the cross product of two vectors it follows
from (1) that
d - -
T RXV)=0
which implies

RXV=nh @)

where 7 is some constant vector of mtegratlon From this simple but important
relation we notice that & always remains perpendicular to F and consequently the
motion remains confined to a fixed plane in Z. Now

- - A —
h=Rx%—RXtmm=RX(ﬁR+Rw)

Thus

oo dR
s 2 e
huRRth

and employing this result together with (1) we obtain

- A
gy . F dR
dt R aige

Since h and p are constants this equation can be written in the form
d o o d , A
| 7 (VX h) = T, (uR)
which implies

— A -
VXh=-ulR +e 3)

t]
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ecessary; where ¢ is another constant vector of integration. Since V X } lies in the plane of
uch their motion, ¢ also lies in the plane of motion.
: problem Let © be the angle measured from ¢ in the positive direction (i.e., counterclock-
ing conic wise) to R. In view of (2) and (3) we have
- - - L — - - A -
itk the h‘=h-RXV=R-VXh=R-p(R+e)
1ss M. If : Consequently
R=—M/p @)
l1+ecos®
This is the general equation of a conic with eccentricity e and semilatus rectum ¢
from the =P R = 4 ®)
wdhere to i 1+ ecos® |
) Thus we obtain the well-known fact that the trajectory of the vehicle moving under i
rest In Zci the influence of a single gravitating body is a conic section. |
= u an |
) .4
4 NORMAL TO
/h PAGE (UP)
t follows
e o
@
mportant
ently the Fig. 1.
Since R is minimum when 6 = 0, the direction of ¢ is along the direction
of perihelion (see fig. 1, where ¥ and F* denotes the occupied and vacant foci
respectively).
Velocity vector as a fraction of &, 4, and &
We shall now derive a very useful formula that expresses the vehicle’s velocity
vector in terms of the ¢ and % vectors and its unit position vector R. By making
use of the vector triple product formula it follows that
X (VXE) =GRV - G0
But since V is perpendicular to h we obtain
BV =k X (V xF)
and by employing (2) we have
3) V - = hX R+ o) _ (6)
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As an immediate application of (6) we derive the well-known energy equation.

Vi=2(V-hXR+ V-hXo

el

1 [— - - - -
= R—g[h-R‘X V + R(e-V X h)]
By employing (2), (3), and (4) this expression becomes

(2 1)
g o =
V ,u.\R =+ 2 ©)
where the negative or positive sign is chosen according to whether the trajectory
is elliptic (in which case £ = a(l — ¢?)) or hyperbolic (in which case £ = a(e? — 1)).

Lambert’s Theorem

We now come to a fundamental theorem of Celestial Mechanics known as
Lambert’s Theorem. This profound result will play an important role in the deter-
mination of interplanetary trajectories. The theorem states that the time T required
for a body to move from a point P with position vector R; to a point  with position
vector K, depends only on R; + R, and the distance ¢ between P and . The proof
of this theorem can be readily found in any advanced text and hence we shall
merely state the functional relationships

T = f(R:, Rs; a) ®)

where a denotes the semimajor axis of the conic. The eccentricity is expressible
as another function of R, R, and a.

e = g(él, f_ég; a) 9)

The calculation of the ¢ and % vectors from two position vectors

Suppose two position vectors félg,nd R, are known together with the time required
for the vehicle to pass from R; to R.. Then by Lambert’s Theorem ((8) and (9)) the
trajectory’s semimajor axis a and eccentricity e can be calculated. The trajectory’s
h vector can easily be calculated from

} 5 el XA (10)

[Ry X Ry
which follows immediately from (5) and the fact that k is normal to the plane of
motion. The plus sign is chosen if 0 < X RiR; < 180° and the negative sign if
180 < X Ry, R; < 360°. Since ¢ lies in the plane of motion there exists two scalors

d h that - - s
a and B suc a 3 = o, 48R 1

If we dot multiply each side of (11) by 1/,:;_?7'1 X ;ﬁand 1/u 1?2 X h where 17’1 and
V. denotes the vehicle’s velocity vector at Ry and Rs, respectively, and make use of
(3) and (5) we find

b [25¢ an ‘
o =

bs 2y g =_:_f1-21 by |

D D
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tion. where
b,‘ = Ri. ‘J[“ et — 1
a; =4
ay = Bi - B;+ ¢ — B,
j and
a1 a2
D=
(7) 4331 433
;B‘fcf;';y Using the Gravitational Influence of a Passing Planet
We now consider the problem of determining a trajectory in the vicinity of a
passing planet such that its influence will enable the vehicle to rendezvous with
nown as another planet. Let 2 denote any cartesian inertial frame with the sun’s center as
he deter- its origin. Let 2’ be a parallel translation of Z with new origin located at the center
required of a planet influencing the motion of the vehicle. Let = denote the region of gravi-
| position tational influence about the planet. It can be shown that r can be taken as a
“he proof spherical region with center at the planet’s center and radius p* given by
we shall . m\2/5
7= ()"
® where R is the distance between the sun of mass M and the planet of mass m.
cpressible We recall that the problem is defined by specifying Py — P; — - - - — P, where
P, is the launch planet and P, the last planet to be encountered along with the
launch date T and time of closest approach T to Ps.
(9) The following notation shall be employed through this section:
(a) PPin = the elliptical transfer trajectory from P; to Py
2 required (b) fé.—(t) = position vector of P; with respect to Z at time ¢ ( = 1, 2,
d (9)) the . - -em)
ajectory’s (e) R() = position vector of vehicle with respect to = at time ¢.
d) »(t) = position vector of vehicle with respect to =’ at time ¢
(e) f’.—(t) = velocity vector of P; with respect to Z at time ¢
(10) ) f(i) = velocity vector of vehicle with respect to = at time ¢
(g) ﬁ’(t) = velocity vector of vehicle with respect to =’ at time ¢
> plane Oi; (h) Tv*, Te* = time at which vehicle enters and leaves  of P, respectively
“:2 :(lzi?ors D) ay, ;a5 s = sem_imaj or axis and semilatus rectum of P1P; and PoP;, respec-
tively
(11) G) &, ki _213’ hs = ¢ and & vectors of P.P; and PP respectively
sre V; and (k) as, e, ha = semimajor axis and ¢ and h vectors of hyperbolic passing
ake use of trajectory in 7 of P, with respect to =’ (with respect to =;

this trajectory in = is not a conic and hence these quantities
have no meaning)

(1) d. = ¢'=tance of closest appro..ch to the surface of I,
(m) pe = my( where m, is the mass of P,

_—
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Py
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Fig. 2.

We shall determine the complete trajectory by first determining the trajectory
in the vicinity of P, which will cause the vehicle to intercept P;. We shall also

determine P.P; and P,P; (see fig. 2).

The fundamental equation
If Ty* < t < T,* it follows from the above notations that
E(t) = Ba(t) + ()

V() = Vo)) + V')

Since half of the total time that the vehicle spends in 7 is very small compared to
the period of P; about the sun we may write

V()) = Va+ V'(0)
VT =Va+ VT G=12) (12)
VHTY) = Vi+ 2V, V' (TY) + V'XTY (13)

By invoking the energy equation (7) for hyperbolic trajectories we write
T 2 1
Vi) = (ﬁ’_ _)
( ) k2 P( f:) + as

The radius of r at T1* which is p(T1*) is almost identical with the radius of = at
T.* which is p(T»*). Thus the above equation implies that the vehicle’s energy with
respect to =’ as it enters r is the same as its energy as it leaves 7.

V(@6 = VAT (14)
Upon substituting this result into the difference of the equations given by (13)
we find

Hence

Consequently
Thus

VT3 — VATY) = 2V, [V'(TD) — V(TD)] (15)
With the aid of (12) this equation can be expressed as
VTS — VHTY) = 2V, [V(Th) — V(T))] (16)

It should be borne 'i» mind that this equu’ion in essence says notiing more than
(14). Its value lies in its form where the quantities are given with respect to Z
and not Z'.
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Fig. 3.

The determination of the elliptical orbits associated
with the transfer trajectories

By the orbits associated with the transfer trajectories we mean the two closed
elliptical orbits about the sun where PP, and P,P; are sections. The elliptical
trajectory PP, begins at the center of P, with position vector Rl(Tl) and ends at a
point on the surface of ~ at 7'y* with position vector R(Tl*) The elliptical trajectory
PaP; begins at a point on the surface of r at T»* with position vector R(Tz*) and
ends at the center of P; with position vector Rg(’l 3)-

In figure 3 the short solid line represents a small portion of P,’s orbit about the
sun when the vehicle is nearby. The points D, E, and G are the planets’ positions
at T*, T, and T,*, respectively. The longer solid line represents a small part of the
vehicle’s trajectory near P,. The point A is the position of the vehicle at the time
Ty* as it enters 7, B is its position at T, when it is closest to P; and the point C' is
the position of the vehicle at time 7%* as it leaves the moving region 7. The trajec-
tory of the vehicle bounded by A and C is not conic since the figure is drawn with
respect to =. When viewed from 2’ this part of the trajectory is hyperbolic. The
vehirle’s elliptical trajectorics outside = appear as = 2ight line segments beouse of
the scule of the figure. The sun is very far away and therefore the vectors h\ "),
RQ(TL‘) and ]?«(Tg*) appear as parallel vectors. The dotted lines are continuations
of PP, and P,P;. The points B’ and B”’ correspond to the positions of the vehicle

- ————————————e
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moving on the orbits of PP, and P,P; at the time T as though P, did not exist.
The figure clearly displays some very important facts.

It is easy to see that the position vectors of B’ and B" are almost identical with
Rz(Tg) Thus by employing Lambert’ Ce Theorem with 7' = Ty — T}, R; = Rl(Tl),
and R,(T.), the semimajor axis a; of P\P; can be calculated. Then by using (9) the
eccentricity e; can be found. Consequently since £i = a;(1 — e,?) the vectors ¢, and
hy corresponding to Pin can be calculated by (10) and (11).

Similarly by setting ' = T3 — T, R; Rg(Tz and R« = Ra(Ts) an application
of Lambert’s Theorem yields a; = a3(T;). Since T; is unknown q; is written as
a3(T5) meaning that as is a function of Tj. Follomng the above procedure the
functions e;(Ts), &:(Ts), e(Ts), and ha(Ts) can in theory be obtained. In practice
these functions are not actually determined since high-speed digital computers
make it possible to give T’; an actual trial numerical value. Thus as(T’s), es(Ts),4(T’s),
es(Ts), and hy(T;) all take on actual numerical values corresponding to the trial
value given to 7. The actual value of T; can be obtained by noticing a second
important fact suggested from figure 3. It is clearly evident that the vehicle’s
velocity vector at A and C are almost identical with the hypothetical velocity
vectors at B” and B”. Consequently in view of our first observation these velocities
can easily be obtained by (6).

vy = }32, X [BoTs) + &

1’1(T;) b { (T) a(Ts) X [R (T 2) + Ea(Ts]
Thus the actual value of T; is that value yielding a solution to (16). In general
there are an infinite set of values of T'; generating vectors I'_;(Tg*) which satisfies
(16) but we shall choose the solution that gives T35 — T, the smallest value. Thus
a systematic search for T3 can be initiated which, when found, determines the
values of as, €3, &, € e3, and h3 along with V(T-") Hence the elliptical orbits associated
with PlPa and Png can be completeiy determined. We emphasize at this point
that even though P(Tl*) and V(T*) are known, Ty*, T.*, R(i’ 1*) and R(’J.’ 2¥)
remain to be calculated.

The determination of the hyperbolic trajectory

We now consider that part of the vehicle’s trajectory in 7. The seemingly difficult
task of finding this trajectory turns out to be surprisingly easy.

Figure 4 is drawn with respect to Z’. Hence the vehicle’s trajectory in 7 is hyper-
bolic. The points 4, B, and C correspond to the points A, B, and C of figure 3.
From (12) we calculate the hyperbolic excess velocity vectors at 4 and C

V(T = V(T — Va G=1,2)

The quantities V'3(T1*) and V'2(7y*) are now calculated and in view of (14) we
calculate their average V2.

vt =1 + v

‘Liius by applying the encriy equation (7) we cal-ulate the semimajor axes as of
the hyperbolic trajectory.
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Fig. 4.
o s SEOR o -
= e Z o (19
where
m\2
px = (ﬁf) Ry(T5) .

The term 2y, is negligible compared to V'%* since with respect to the hyperbolic
tro ectory the sphere of inifiuence lies at infinity. IIence this term may be omitted
from (17) with little or no effect.



102 / FIRST GRADUATE ACADEMY

If we denote the length of the conjugate axis of the hyperbolic path by b; as

shown in figure 4, one observes that
bs

t = —

an ¢ 5

where ¢ is one half of the angle between the asymptotes. Thus since the eccentricity

e; is related to a; and b; by
2
- e @
ag

1
cos ¢ = b

we obtain

Hence by studying figure 4 we find
VT - V(T = V' THV' (T3 cosg(g - )

which is expressible as

o AT e

VT - V(T = VIYV T — 2 cos? ¢)

Thus by making use of (18) the eccentricity of the hyperbolic path can be calcu-
lated by

o { 2V/(T) V'(T5) } 1 19)

' *. ’ * e * =*, - 2
V(T)V(T)) — V(T - V(T2)
The distance of closest approach to the surface of P; can now be easily calculated
by

dy = as(e; — 1) — Radius of P, (20)
If this quantity turns out to be negative the trajectory is obviously physically

unrealizable. The value of T is then progressively increased by appropriate amounts
until the next smallest value of T’ is found.

i i ; ; : ——
7.}. 7.2 7.3,- 7- " r 1t r i i
TIME T 1
Fig. 5.

Figure 5 represents the general characteristic properties of all T'; values in some
interval of time after 7. Suppose the values of T3 and T" satisfy (16) but give a
negative value to the distance of closest approach. Let T5'" be the next T value
but yielding a positive distance of closest approach. This is the value we choose
to take. T's""" is the next possible T; value yielding a positive value to d.
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After T has been determined, the velocity at closest approach V’¢4 with respect
to P can be obtained by again making use of the energy equation. One easily finds

Viea = '\’Jai: (gii_—i) 21)

The magnitude of the h-vector can be calculated by
hy = ‘\/Hzaz(eg ot 1 (22)

By observing figure 4 of the trajectory of the vehicle in r with respect to 2', the
e and h vectors can readily be obtained by

V(1) — V(T
5. _ V@) X V)
|V (TD X V(T3]

The position vectors of the points A and C with respect to =’ can now be calculated
by employing (3)

T = (i— VD X ha — Ez)ﬂ- (=12 (25)

hs (24)

By employing Lambert’s Theorem (8) with B, and R, replaced by p(Ty*) and
p(T5*) the total amount of time AT which the vehicle spends in 7 can be calculated.
Thus T? = Ty — 3AT
T: = T: + 3AT .

Consequently the position vectors of A and C can be calculated with respect to
e Ry = B + 509 G=1,2 @6)

We have now completely determined both arriving and departing elliptical trans-
fer trajectories and the trajectory of the vehicle near the planet P, which will
take the vehicle to P;. Of course, in view of the above approximations the trajec-
tory is not exact; however, one may now, by an obvious iteration process, proceed
to obtain a trajectory that is arbitrarily close to the desired elliptical and hyper-
bolic parts of the total trajectory. In practice it turns out that these approxima-
tions introduce very little error so that it is impractical to obtain greater accuracy.

We sum up this section with a very important observation. Recalling the method
of solution we first ¢ determined PiP; from the given initial conditions. Then we
proceeded to find P,Ps by solving (16) such that ¢ > 0. Finally the trajectory in r
was calculated. Now instead of terminating the mission at P; we wish to use P; to
go on to some other planet P;. Since the initial conditions specifying Ty, Ts, P,
and P, are equivalent (on an interplanetary scale) to specifying P\P; we simply
take P,P; as an initial condition to proceed to P;. Thus P:P; and the hyperbolic
trajectory in the vicinity of P; can be determined by a completely analogous man-
ner until P, is reached. The numerical results which we take up in the next section
clearly display the feasibility of such advanced missions.
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Numerical Results

In the preceding section we were able to determine very general and compli-
cated interplanetary free-fall trajectories. This was accomplished by employing
the vector techniques developed in the section on conic trajectories and assuming
that only one body of the solar system at any given time influences the vehicle’s
motion. The following examples depict typical advanced free-fall interplanetary
trajectories which we are concerned with.

i) Trajectories of vehicles launched from Earth at a given time T; which makes a closest

approach to Venus at a given time T (T shall continue to be called the Venus intercept date)
such that the gravitational influence of Venus sends the vehicle back to Earth (Earth-Venus-

Earth).

ii) Trajectories of vehicles launched from Earth at a given time T, which intercepts Mars at
a given time T, such that the gravitational influence of Mars sends the vehicle back to Earth
(Earth-Mars-Earth).

iii) Trajectories of vehicles launched from Earth at 7', making a closest approach to Venus at
T': whose gravitational influence sends the vehicle on an intercept course with Mercury (Earth-
Venus-Mercury).

iv) Trajectories of vehicles launched from Earth at T, making a closest approach to Venus at
T: where the gravitational influence of Venus causes the vehicle to intercept Mars such that the
gravitational influence of Mars sends the vehicle back to Earth (Earth-Venus-Mars-Earth).

v) Trajectories of vehicles launched from Earth at T, making a closest approach to Venus at
T'; which causes the vehicle to intercept Mars which in turn causes the vehicle to return to Earth
where the Earth’s gravitational influence causes the vehicle to repeat the same flight; sending
it on to Venus such that Venus’s influence sends it to Mars whereupon the Martian gravitational
influence causes the vehicle to return to Earth (Earth-Venus-Mars-Earth-Venus-Mars-Earth).

These examples represent only a very small fraction of the total number of possible
different types of advanced interplanetary free-fall trajectories having n — 1 plane-
tary encounters. For example, the total number of different types of advanced
trajectories having only two planetary encounters of the form P,—P,-P; where
P, = Earth is 9° or 81! In general the total number of different trajectories of
the form P1—Py - - - —P, having n — 1 planetary encounters is 9,. Thus the
trajectory given by iv is only one of the 729 different types possible of the form
P]_—PQ—P;;—P.; W'hCI‘E Pl = Earth.

Precise numerical calculations of even the most simple types of these advanced
trajectories having only two planetary encounters have (as far as I know) never
been carried out. A few round-trip trajectories to Mars of the type given in example
ii have been calculated at the Massachusetts Institute of Technology by R. Battin,
but these did not include the important Mars hyperbolic approach trajectories.

Battin reported on six different trajectories of which the shortest flight time
was about 1,050 days (see ‘“The Determination of Round-Trip Planetary Recon-
naissance Trajectories,” Journal of the Aero/Space Sciences [Sept., 1959]). This
minimum total flicht time is obviously too long for serious consideration. Conse-
quently, as the program for the digital computer was being written corresponding
to the preceding section, many important questions remained unanswered. For
example, since Battin calculated flight times in excess of 1,000 days for relatively
simple trajectories like ii, how much time would trajectories like iv require . More-
over, it was not known whether trajectories like iii were even possible, to say
nothing of trajectories like v.

T i

B e —



d compli-
smploying

assuming
3 vehicle’s
‘planetary

s a closest
reept date)
wrth-Venus-

ts Mars at
'k to Earth

0 Venus at
iry (Earth-

;0 Venus at
ch that the
-Earth).

0 Venus at
rn to Earth
ht; sending
-avitational
ars-Earth).

f possible
- 1 plane-
advanced
P; where
ctories of
[hus the
the form

advanced
‘W) never
1 example
{. Battin,
~tories.

ght time
v Recon-
J]). This
1. Conse-
sponding
red. For
elatively
7. More-
), to say

B T LS

R —

ST N S

MINOVITCH / 105

When the early numerical calculations were confirmed by elaborate integrating
programs at the Jet Propulsion Laboratory, the Computing Facility at the Uni-
versity of California, Los Angeles, where the program was written, began the first
extensive analytical analysis of these advanced trajectories. These early calcula-
tions at UCLA not only proved the feasibility of such missions, they showed that
in some instances they could become an economic necessity.

As the numerical calculations were stepped up by also utilizing the computing
complex at the Jet Propulsion Laboratory, three distinet types of advanced mission
began to crystallize. These missions follow in a natural chronological order.

1) Unmanned exploration of the inner planets by instrumented space vehicles.
2) Initial interplanetary missions by manned vehicles.

3) Interplanetary transportation networks to support manned bases on Venus
and Mars.

Since short flight times and low launch energies are always desirable, the first
category of missions must be of the form

Py—Py—Py

where P, = Earth, P; # P; and are either Mercury, Venus, or Mars.

The six possibilities are: Earth—-Mercury—Venus; Earth—-Mercury—-Mars; Earth—
Venus—Mercury; Earth—Venus—-Mars; Earth—-Mars—Mercury; Earth-Mars-Venus.
The first two possibilities were immediately eliminated because launch energies
required for Earth-Mercury transfer are very high. The last two possibilities were
found to require either high launch energies or long flight times. It was discovered
that the Earth—Venus-Mercury trajectories required considerably less launch
energies than the direct flight Earth—-Mercury trajectories. These advanced trajec-
toreies would permit the payload weight reaching Mercury to be increased by over
100 per cent during the decade 1965 through 1974. Of course, these trajectories do
require greater flight times than the direct flight Earth-Mercury trajectories, but
in some cases these flight times were found to be less than those required for
direct flight Earth-Mars trajectories.

Now missions to Mars on conventional Earth—Mars trajectories can take place
only during launch periods lasting only a few weeks. These favorable launch periods
are separated by about 780 days (the “synodic period of Mars’). This represents
a definite time barrier for trips to Mars. If a mission is not successful then we are
forced to wait about 780 days until the next launch opportunity occurs. Now
favorable Earth—-Mars launch periods occur in 1969, 1971, and 1973. It was dis-
covered that the Earth—Venus—Mars trajectories for 1970 and 1972 have low launch
energies and relatively short flight times. Thus by utilizing these trajectories the
three launch opportunities for missions to Mars can be increased to five: 1969,
1970, 1971, 1972, and 1973.

Of course, advanced trajectories of the form P—Py— - + - =P, will require highly
accurate planetary approach guidance. These guidance systems on the other hand
will not require any significant scientific breakthroughs. The guidance systems now
being developed for the Apollo moon mission could perhaps meet these high guid-
ance requirements,



TABLE 1

Launch date HEV, T2 Oz HEV: TISI | DOCA VACA DA T Bz HEV, TFT Trajectory profile

1/20/65......... 7.20 98.00 | 137.567 | 16.39 | .... | ..... | ool oot | e e 98.00 Earth-Mercury
12/18/65......... 3.97 | 170.17 | 249.76 | 6.86 | 2.01 | 1560. | 11.48 | 56.57 | 105.62 | 227.95 | 9.83 | 275.43 | Earth-Venus-Mercury
1/ 3/66......... 6.86 | 98.00 | 144.55 | 16.44 | ... | ..... | ool oo e e s 98.00 Earth-Mercury
12/11/66......... 6.58 | 104.00: 1 I57.36 [ 1620 | o | o Voo Vv | v Pl 104.00 Earth-Mercury
6/19/67.........13.70 | 96.28 | 107.84 | 6.56 | 2.09 | 311. | 12.01 | 65.49 | 71.49 | 190.36 | 9.25 | 167.77 | Earth-Venus-Mercury
WR2LBT . cvviiies 6.46 | 106.00 | 169.50 [ 15.15 | .... | ..ooo | ceeii | ieii | eeeeea | e ] s 106.00 Earth-Mercury
11/12/88. . ... i 6.85 | 102.00 | 175.42 [ 12,84 | .... | ..... ki cevwl| msnas | osssems s 102.00 Earth-Mercury
1/23/69......... 3.76 | 189.38 | 256.88 | 6.39 | 2.14 | 645. | 11.71 | 65.57 | 107.67 | 214.64 | 9.79 | 279.05 | Earth-Venus-Mercury
B[4 F ¥ | A 6.85 | 116.00 | 216.76 | 13.02 | .... | ..... ppmaed el e | saeame Bueease 116.00 Earth-Mercury
8/18/70.........| 3.50 | 101.22 | 110.31 | 7.59 | 1.82 | 3768. | 11.11 | 42.68 | 59.00 | 145.66 | 11.91 160.22 | Earth-Venus-Mercury
VRBY/TY:. vviivivus 7501 96.00 | 129.16 | 17.04 | .... | ccoe | venve ] vnnne ] ceennn l eeenen ] onnn 96.00 Earth-Mercury

§ . fr ) D — 2.00: | 9800 1 13B.06 | A7A3 | v | winne [owmnen Pammens ] sswns | vevain | s 98.00 Earth-Mercury

4/ 1/72......... 4.03 | 196.58 | 265.01 | 7.30 | 1.88 | 521. | 12.30 | 57.27 | 85.00 | 151.67 | 14.40 | 281.58 | Earth-Venus-Mercury
1BAA9STE. i iivinn 6.74 1 104.00 | 180.99 | 1604 | v | suvus Do | awsng | sown | amsven |oveiss 104.00 Earth-Mecrury
11/ 4/73......... 4.25 | 93.79 | 103.34 | 8.10 | 1.70 | 2083. | 11.71 | 41.31 | 58.00 | 137.83 | 11.14 | 151.79 | Earth-Venus-Mercury
V2P 2008 i 6.49.1 106.00 | 188.28 [ A8.78 | wuun | cawny waes |mwesn | soisss e | segis 106.00 Earth-Mercury

TABLE 2
Launch date HEW Tia Oz HEVs | TISI | DOCA | VACA DA Ta O HEV; TFT Trajectory profile

2/28/89. . ..i0iu. 2.97 | 180.00 | 141.11 srwae| e b sesse Voeees e | e | ssmm 5.05 | 180.00 Earth-Mars
8/12/70......... 3.26 | 129.28 | 151.68 | 5.47 | 2.45 | 3850. 9.76 | 62.87 | 180.00 | 173.01 | 6.75 | 309.28 Earth-Venus-Mars
5/19/71: i 2.84 | 205.00 | 155.03 | ..... vors | evssw e Voagwss | s | ovsanss 2.82 | 205.00 Earth-Mars
5/21/72......... 403 | 172.00 | 257.62 | 8.29 | 1.66 | 966. | 12.67 | 47.26 | 117.70 | 112.77 | 12.61 289.70 Earth-Venus-Mars
TI2T T8 v 3:80:1 196:00: 1 104 F<uavn | wais | wanm asmas Uiass 1 sesnas I viseds 2.99 | 195.00 Earth-Mars
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Table 1 contains some important characteristics of near minimum launch energy
direct flight Earth-Mercury and Earth-Venus—Mercury trajectories. Table 2 is a
similar table of Earth-Mars and Earth—Venus—Mars trajectories. All of the tables
in this paper will adhere to the following notation:

HEV), = hyperbolic excess velocity (km/sec) at Py

Tk = time taken by vehicle to pass from P to Prya

Ok, k1 heliocentric angle swept out by the vehicle passing from Py to Piy

TISI, = amount of time (days) vehicle spends in P;’s sphere of gravitational
influence

DOCA, = distance of closest approach (km) to P,’s surface

VACA: = velocity at closest approach (km/sec) to Py

DA, angular difference between the vehicle’s velocity vectors as it enters
and leaves P;’s sphere of influence

TFT = total flight time (days)

If some symbols do not have any subscripts it will be understood to be 2. For
example DOCA means DOCA,, etc. The time corresponding to all calendar dates
that appear without any reference to a particular time shall always be taken as
1200 GMT. In discussing the launch energy of a particular trajectory we shall
refer to the trajectories vis-viva energy which is simply the square of the hyper-
bolic excess velocity. These quantities however shall be omitted from the tables.

An examination of table 1 shows that the launch energies required for direct
flight Earth—Mercury missions require approximately 3 to 4 times as much launch
energy as those required for Earth—-Venus—Mercury missions. We also notice that
the Mercury approach energies for the direct Earth—-Mercury trajectories are 4 to
6 times higher than those associated with the Earth—Venus—Mercury trajectories.
This will be an important consideration for missions requiring orbiting payloads
about Mercury.

Table 2 shows that the Earth—Venus-Mars trajectories very neatly fills the gap
between the 1969 and 1971 Earth-Mars launch opportunities and the 1971 and
1973 launch opportunities.

Let us now consider possible applications of these multiple planetary encounter
free-fall trajectories to early manned interplanetary flight. The simplest of all such
trajectories applicable for manned vehicles are Earth—Venus-Earth and Earth—
Mars—Earth. Table 3 contains some important properties of near minimum launch
energy Earth—Venus—Earth and Earth-Mars-Earth trajectories. We observe that
the Earth—Venus-Earth trajectories are much more reasonable than the Earth—
Mars-Earth trajectories. The former could probably be achieved with a non-
nuclear Nova-type launch vehicle. The Earth—-Mars—Earth trajectories could be
made shorter by increasing the launch energy but this increase is of the order of
200 to 400 per cent. Consequently, with respect to the manned planetary recon-
naissance missions we find ourselves faced with another very sad time-energy
barrier situation. A non-nuclear Nova-type launch vehicle could probably be used
for the launch vehicle for Earth-Venus-Earth manned reconnaissance missions
but not for the Earth-Mars—Earth missions.

During the early part of June, 1962, while I was checking some newly calculated
multiple planetary trajectories of the form Earth-Venus-Mars-Earth, a very
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TABLE 3

Launch date HEW: T (s 11 HEV: TISI | DOCA VACA DA T —[ Oy HEV, TFT Trajectory profile

8/20/70. ........ 2.92 | 114.00 | 132.23 | 5.44 | 2.46 | 728, | 11.20 | 76.16 | 250.96 | 227.48 | 7.13 | 364.96 Earth-Venus-Earth

B/ 8/T1 convvinis 3.97 | 316.00 | 204.84 | 4.21 | 3.23 | 2251. 5.74 | 34.88 | 795.83 | 530.43 | 5.85 | 1111.83 Earth-Mars-Earth

4/ 3/72......... 3.69 | 114.00 | 134.07 | 5.02 | 2.69 | 3983. 9.47 | 68.29 | 260.95 | 235.43 | B.18 | 374.95 Earth-Venus-Earth

8/20/73......... 4.60 | 236.00 | 151.68 | 2.53 | 5.46 | 7024. 3.83 | 46.06 | 790.72 | 502.25 | 6.56 | 1027.70 Earth-Mars-Earth

LT 7 o Y- 3.76 | 116.00 | 139.29 | 4.47 | 2.94 | 5344. 8.76 | 71.80 | 269.46 | 241.00 | 7.90 | 385.46 Earth-Venus-Earth

TABLE 4
EarTH-VENUS-MARS-EARTH

Launch date HEVW, T (277 DOC As DA, Tu O DOC A, DA, Tu Ou HEV, TFT
_ B oo s 3.26 | 129.28 | 151.68 | 3848. | 62.87 | 180.00 | 173.01 | 6590. 0.89 | 312.36 | 290.86 | 9.34 | 621.63
| 5/2T/72. ... 4.16 | 170.16 | 258.61 | 6552. | 30.01 | 141.94 | 121.74 | 1249, | 13.40 | 157.59 | 79.72 | 13.04 | 469.68
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remarkable fact was discovered. Now it was already known at that time that the
minimum energy Earth-Mars—Earth trajectories required very long flight times.
Thus, it was believed that the most favorable Earth—Venus-Mars-Earth manned
reconnaissance trajectories would have flight times much greater than 1,000 days.
The fact is, however, that this is not always true. It was discovered that in some
cases this assumption was false by a very wide margin. These cases very conve-
niently turned out to be the 1970 and 1972 Earth-Venus launch periods.

Table 4 contains a description of some important characteristics of these Venus—
Mars reconnaissance trajectories. These trajectories show that by employing
Earth-Venus—Mars-Earth trajectories instead of Earth-Mars-Earth, the flight
times can be greatly reduced. These important trajectories remove the time-energy
barriers inherent in simple Mars reconnaissance trajectories and open the door to
the utilization of non-nuclear launch vehicles for early manned Mars fly-by mis-
sions. Moreover, these trajectories also permit a Venus reconnaissance at the same time.
It has been determined that the 1973, 1975, and 1977 Earth—Venus launch periods
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do not possess nearly as favorable Earth-Venus-Mars-Earth trajectories as those
given in table 4. Since the 1970 and 1972 trajectories make it unnecessary to per-
form separate Earth-Venus-Earth and Earth-Mars-Earth missions they would
make ideal early manned interplanetary missions, Figure 6 displays the planetary
configuration for the 1972 Earth-Venus-Mars-Earth trajectory. Figures 7 and 8
show how this trajectory looks as it passes Venus and Mars, respectively.
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Reeent studies regarding manned interplanetary missions to Mars show that a
Mars landing can be carried out with almost total atmospheric braking. The
studies show that the dry weight of the smallest possible vehicle of this type would
be approximately 13,000 Ib (including the heat shield). This vehicle called a Mars
Excursion Module could carry 4 men. It has also been calculated that the weight
of an interplanetary mission module carrying all the life-support equipment and
related supplies to last a crew of 4 for 1 year would be almost 38,200 1b. An Apollo-
type (6-man) aerodynamic-braking Earth reéntry vehicle (reéntering at 13.3
km/sec) would weigh about 13,180 lb. Using these design parameters one may
wonder if it is possible to attempt a manned Mars landing mission with a Nova-
type launch vehicle. Unfortunately, since the favorable Mars-Earth launch periods
occur 40 to 60 days before the favorable Earth-Mars launch dates, the launch
energies required for the conventional mission profiles are almost insurmountable.
Very high energy nuclear stages would be an absolute necessity along with many
complicated orbital refueling operations. There is, however, a way which could permat
a manned exploration of Mars using a conventional non-nuclear Saturn 5 Apollo
launch vehicle. In order that this method be clearly understood we shall consider
an actual example.

Before attempting an actual manned landing mission, it would probably be
desirable to first carry out a single manned Mars fly-by mission. This mission could
provide an ideal means of testing man’s endurance under prolonged interplanetary
space flights. For this reason, the August 8, 1970, Earth—Venus-Mars-Earth
trajectory appearing in table 4 may prove to be ideal. Now assuming a crew of
3 or 4, the weight of the primary interplanetary mission module could be taken to
be approximately 43,000 lb. Let us take the weight of the Earth reéntry module
to be 13,000 Ib. We recall the well-known formula

M, (AV)

i, exp \ -
where M, and M, are the masses of a vehicle before and after obtaining a velocity
change of AV using a rocket with an exhaust velocity of ¢ km/sec. Consequently
since our trajectory’s Earth approach hyperbolic excess velocity is 9.34 km/sec
the vehicle would reénter the Earth’s atmosphere at about 14.5 km/sec. Thus we
shall employ partial rocket braking to permit our 13,000-lb reéntry module to
reénter the Earth’s atmosphere at about 13.3 km/sec. Thus the mass before retro
should be about 19,000 Ib using a rocket motor weighing 500 Ib, and an Isp of
367 sec. This means that the total weight at the start of the mission would be
approximately 19,000 + 43,000 1b or 62,000 lb. The Saturn 5 launch vehicle will
have the capacity to send 90,000 Ib on an escape trajectory (parabolic), thus since
the Earth’s escape velocity is 11.19 km/sec, this rocket will be able to send approx-

imately TR
= 2 2
90,000 - e exp (“'19 \3/]61'19 + 9.26 ) = 79,500 Ib

on the required trajectory! The Saturn 5 should be a highly reliable standard
launch vehicle by 1970.

We shall now show how this launch vehicle could be used to carry out a manned
Mars landing mission. To carry out this mission two vehicles will be used. The first,
which we shall denote by A, shall be a simple Earth-Venus-Mars—Earth fly-by
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vehicle. The second vehicle, denoted by B, shall be launched on an Earth-Venus—
Mars fly-by trajectory and in place of an Earth reéntry module it shall carry a
small Mars excursion module. The mission profile consists of launching A and B
on particular trajectories that will bring B to Mars several days before A makes
its closest approach. During this time the crew of B can be exploring the surface
of Mars. Then as A begins to make its closest approach, the crew of B launches
their small Mars excursion vehicle and rendezvouses with 4 where they abandon
the excusion module to complete the journey in A.

Let us now consider a definite trajectory profile for the manned Mars landing
mission. Now just before the Mars excursion module is launched to rendezvous
with A it is literally stripped of all equipment (heat shield, ete.) not absolutely
necessary to effect a successful rendezvous with A. Thus at the moment it joins
A we may assume it weighs 12,000 1b. The particular trajectories that we shall
choose do not appear in the paper. They have, however, been carefully calculated.
The first vehicle to be launched is B, which takes place on May 31, 1972. Its
Earth-Venus—Mars trajectory will take it by Venus on November 17, 1972, with
a distance of closest approach of 9,223 km. It will reach the vicinity of Mars on
May 12, 1973, after a total flight time of 346 days. The vehicle’s departing hyper-
bolic excess velocity will be 4.27 km/sec and will approach Mars with a hyperbolic
excess velocity of 6.03 km/sec. Four days after launching B, A is launched. Its
Earth—Venus—-Mars-Earth trajectory will take it past Venus on November 19,
1972, with a distance of closest approach of 9,164 km. This vehicle will pass Mars
on May 23, 1973, when it meets the Mars excursion module of B. The mission is
completed on October 17, 1973, when the Earth reéntry module lands with its
original crew plus the crew of B. The trajectory that A takes requires a departing
hyperbolic excess velocity of 4.33 km/sec. Its return hyperbolic excess velocity is
9.51 km/sec. This mission profile will allow a crew of B to spend 11 days of explora-
tion on Mars. The total flight time is 499 days. For this reéntry profile a retro
thrust must be applied as in the previous case to dissipate about 3.1 km/sec to
enable the intial atmospherie braking to take place at about 13.3 km/sec. Conse-
quently, before retro the module will weigh approximately 31,000 lb. Although
the flight of A in this case will be 122 days shorter than that of the 1970 mission,
it will probably be required to carry more control equipment. Thus the injected
weight of A will be about 72,000 lb. The Saturn 5 will be able to inject approximately

2 2
90,000 - ¢ exp (”'19 F /I + 4'33) = 72,100 Ib

The hyperbolic excess velocity of A as it approaches Mars will be 5.97 km/sec.
Thus the weight of the Mars excursion module prior to launch should be about
103,000 1b. Assuming that 2 tons of supplies and equipment are left behind on
Mars and assuming that B’s interplanetary mission module weighs 40,000 1b, we
find that the necessary injected weight at the beginning of its flight is 145,000 Ib.
The Saturn 5 will be able to inject about 72,500 1b on B’s trajectory. This means
that only two Saturn 5’s would be necessary to send B on its required trajectory
(via orbital assembly and refueling).

It should be stressed at this point that these calculations are optimistic (e.g.,
fuel requirements for guidance are omitted), however the trajectories chosen for 4
and B are not the best possible combinations. Others exist which would be more
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desirable. It should also be pointed out that we have taken only the minimum
launch capabilities of the Saturn 5 as seen at the present time. This vehicle may
develop a high growth potential, and by 1972 it may be capable of sending pay-
loads weighing considerably more than 90,000 lb on an escape trajectory. Our
main purpose for the above analysis is to show that it may be possible that the
Saturn 5 could be used as the launch vehicle for the first manned landing mission
to Mars. No new launch vehicles or advanced propulsion systems would be required.

After the first flights to the inner planets, man will naturally construct bases on
these planets. These bases, no matter when they are constructed, will naturally
require a means by which men and equipment can be taken to and from these
bases. In the distant future when propulsion systems far more advanced than those
currently being studied are developed, it will probably be possible to make inter-
planetary voyages such as Earth—-Mars transfers with flight times as short as one
or two weeks. But for the near future all interplanetary transfers will have to be
made on near optimum transfer trajectories with low departure and arrival hyper-
bolic excess velocities. Consequently, a great deal of life-support equipment will be
necessary to transport a few persons from one planet to another. In short, cargo
vehicles shall probably be robot-type vehicles carrying no equipment necessary
for manned flights, and the manned vehicles will probably carry very limited
amounts of cargo. In addition to carrying all the extra equipment for manned
flicht, these vehicles will probably also be required to be able to induce some
artificial gravity. Hence, the transportation of just 10 men, for example, from Mars
to Earth should ordinarily require a large and very expensive rocket. Methods of
recovery will become a necessity. This problem of economics can be conveniently
solved by constructing a long-lasting interplanetary transportation network
designed for the sole purpose of transporting personnel from one planet to another.

Preliminary calculations have shown that if the planets P; are restricted to
Mercury, Venus, Earth, and Mars where P, = Earth and P; # Py, for¢ = 1,
2, - - -, n it is possible to find sequences {P—P,, — - - - =P,} such that the flight
times T';—T'; are comparable to those required for optimum PP, transfers.
Moreover some of these trajectories were found to have very low launch energies.

The network can be established by first constructing many large space vehicles
that are to be used in the transportation system. This can be done by methods of
prefabrication and orbital assembly. These vehicles can be designed to accommo-
date 20 to 60 persons, and since artificial gravity will be highly desirable the geom-
etry of the vehicles could be a torus with an outside diameter of perhaps 200 to
300 feet. When each individual vehicle is completed one simply awaits its launch
date 71 when the vehicle (i.e., space bus) is injected into its preseribed interplane-
tary trajectory. This could be accomplished by convenient strap-on solid pro-
pellant rocket engines. The vehiele will carry extra provisions and life-support
equipment to last until it makes its first Earth rendezvous, whereupon its supply
of provisions and life-support equipment can be replenished to last until it makes
its second Earth rendezvous, etc. As a vehiele approaches a planet P;, a small
excursion module orbiting P; and containing a few men wishing to go to Py, is
injected onto an intercept trajectory with the space bus. Upon making a rendezvous
the excursion module containing very accurate planetary approach guidance
systems could be left a few miles behind the space bus to be used to transport the
men from the space bus onto an orbit about P;. A tanker vehicle following the
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space bus could be used to refuel the planetary excursion modules. Other trans-
portation systems could be established on each separate planet for the purpose of
bringing the men from the circular orbit down to the planet’s surface. Tanker
vehicles orbiting each planet in the system could refuel the excursion modules that
never actually land on a planet.

The transportation network outlined above seems attractive for several reasons.
One notices that all the vehicles involved in the network (which could be made up
of as many as 30 or 40 space buses all on their own interplanetary trajectories) can
be used as often as desired. These interplanetary transfer vehicles could be very
large and hence could be designed so that these necessarily long planetary transfers
can become quite acceptable. The large number of transfer vehicles in the net-
work would greatly preclude the possibility of a crew running out of supplies and
becoming isolated on a planet. Table 5 contains an example of one such trajectory
of the form Earth-Venus—Mars—Earth—-Mars-Earth—Venus—Earth.

TABLE 5

=1 i=2 1=3 i=4 i=15 1=6 1=17 1=8

Earth Venus Mars Earth Mars Earth Venus Earth
! RS 8/14/70 12/20/70 6/17/71 4/25/72 12/11/73 5/31/74 3/26/75 7/30/75
BEVR. ooio0n o onnt 3.28 5.44 6.74 9.34 13.46 11.81 10.83 7.91
L 47 1 11 T, SRR 128.20 179.30 312.22 505.03 171.58 208.37 126.26
O s e w s 151.25 171.65 200.81 203.10 101.74 196.13 220,57
DOCAs..covvnanns T 3817. G838, 8089, 502. G249 9455.
VAGA . coviviin: 9.75 7.34 11.93 14.23 14.23 12.61
PIBTp consassings 2.47 1.85 2.26 .97 1.82 1.29
Dot Al 63.44 9.69 27.79 6.41 21.27 17.39

Now there remains one very important aspect that must be considered. This
involves the question of accuracy. Just how good is the assumption that one and
only one body influences the vehicle’s motion at any given time?

The Jet Propulsion Laboratory has a program such that if the geometry of the
trajectory near P; is sufficiently close to the exact trajectory required for the
vehicle to intercept P;,4, an integration, iteration process is begun by first determ-
ining the miss vector at Py resulting from the initial approximation and then
using it to modify the trajectory near P; etc., until the miss vector becomes smaller
than a specified amount. This program is highly unstable in the sense that if the
initial trajectory in the vicinity of P; is not extremely close to the real one required
to permit the vehicle to rendezvous with P, the iteration process will not con-
verge. It has been observed that each time this program was employed to check
the trajectories resulting from the solution given in this paper, very rapid con-
vergence resulted. This means that our fundamental assumption must not give
trajectories very far from those which would occur in the real situation.
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