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CEANGING INTERPLANETARY TRAJECTORIES

‘ . ) .
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BY*TRE

GRAVITIORAL INFLUENRCE OF A PASSING PLANET

ABSTRACT

When an interplanetary space vehicle approaches a planet on a free-Jall
trajectory, the grevitional infliuence of the planet e¢an radically change the
trajectory about the Sun. It is possible for such vehicles to take sdvantage
of this influepnce by passing the planet on & precisely caleulated trajectory
which will place the vehicle on an intercept trsjectory vith.another planet, Of.
ecourse, missions to seversl planeis by one free.fall wvehicle will, in general,
take puch more time then flights to one planet but in some csses numericel

calculations have shown sone remarkahly'short titght kiwes for missions 1nvolving

a I : - . .

-

three ditrerantﬂplﬂnets.

Since condltions favorable for itterplanetary Ilighte to perticuier
plenets do not occur often, trips to several planets by one vehicle on & free-
fall trajectory is particularly attragtive. The two most important prerequisites

for such missions are: (1)} the development of bighly sccurate and reliable

planetsry approsch guidance systems, and (2) the development of spacecraft _
components which will give long operating life times to these vehicles.
The determination of free-fall trajectories to seversal planets 1s f i

essentially the famous unsolved n-body problem. Thus, in order to make & detajled

study of these trajectories certain simplifying assumptions must be mede. This '
peper is based upon one fundamental sssumption: At any instant ope and only onei
gravitationsl field influences the vehicles motion. Under this assumption almos£
all of the vehicles trajectory will comsist of ares of different ellipses with
the Sun st & focus, but when the vehicle comee sufficiently close to a psssing

ylanet ite trsjectory will be hyperbolic with respect to this planet which will




\
be at one of the new foci.

The paper contains results of e study of suck conic trajectories
performed at the Jet Propulsion lsboratory during the summer of 1961. The
paper also contains numerous numerical results csrried out &t the Computing

Facility of ithe University of Californie at los Angeles and the computing

w
€

instillation at the Jet Propulsion Laboratory. The numerical study Seversd
simple round-trip trajectories to Venus, Mers, and Jupiter and also miseions to
Mars vie Venus (Earth-Venus-Mars). More complex missions such as Earth-Venus-
Mars-Earth were also considered. The prograzx constructed for an IBM 7090 computer
to determine these free.fall trajectories has the capadbility of finding solutions

for missions where the vehicle rendezvouses with any number of planets.

I. IRTRODUCTION
It has been discovered that conic trajectories give excelient first

approximations to actual Tlight pa.ths of free-fall interplanetary space vehicles.
Thus, it is peturel, while studying épa.ce trajectories, to assume that the vehicle
moves slong conic treajectories. The primary goal of this peper is to determine
& conic trajectory in the vicinity of a passing planet vhich will epable the
vehicle to pass out of its graﬂiaticns.l sphere of influence on a conie trajectory

about the Sun which will intercept ancther pre.determined plasnet. Thus,
we shall assubm that the misslons begin and end ef the centers of mmssless
planets. The initial conditions are given by specifying the order in which the
vehicie is 1o rendezvous with the given plenets along with the launch date and
first closest approach date. I these initial conditions are arbitrarily given
then & solution may not exist or mey be physically unreslizable; that is to say
the resui.ting trajectory may take the vehicle closer to the center of a particular

planet then its own radius. Hence, 8 numerical study of meny different missions
with varying initial conditions was undertaken to determine the characteristics




and requirements of such missions,

No sssumptions shall be mede regarding the geometry of the solar system;
indeed, it will not matier how eccentric the pilsnets orbits sre or how Amuch their
planes of motion differ from each other. Thus, before attacking th* above
problem, we shall fady first develop & convenient pmthematical technigue for
handling conic trajectories in three-dimensionsl space. Since classical astronomy

is not perticularly concerned with the velocities of celestis]l bodies, the old

emen I N i JUR Py
methocl of determining orbits in SP&C'B by six o:r‘n tal elements; orBries M
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_,,has been replaced by mmwmg two ort.hogona.l constaat vectors e _and h vhich ‘
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together with TP determines t.he oz'bit. Recasting :ive oi' the six orhim parameters
it

in the form of these vectors epables the velocity at A point on the trajectory

=
with position vector R to be easily calculated by a slmple formuls.

II. CONIC TRAJECTORIES

We begin ever our study of conic trajectories in three-dimensional
space by equating the dynamic force onl a space vehicle of mwess m with the
force of gravitional attrsction set up by the presentz of & body of mess M.

I T is any inertdsl frame this equation becomes

-
e (¥

where V 4s the velocity of the vehicle and R is & unit vector directed from the
center of the body to the vehicle separated by a distance R, We sball adhere %o
the convention of dencting unit vectors by placing A over the letier.

Since the retioc m/M is very smell we may assume that the body is at
rest in I. We shall take the center of this body as the orgin of Z. By

setting GM = p apd cancelling out m from both sides of the above equation we
obtain
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A. The : and 'ﬁ‘ Vectors of Conic 'I‘mgactcries

By the differentation formule for the cross product of two vectors we

write

Hence with the add of (1) we bave
a (ﬁ x ‘i*')

T =0
o

since the ¢ross product of paralled vectors vanish., This result implies
— sl
FxV « | %‘R‘V) ar + F « %

d
vhere h is a constant wector of integrstion.

. "] .
RxV=h (2)
. From this. imwtutrelatienwe notice that “ﬁ‘&lvays rematns pery

- ; ~ £ o
h and conséguently the.motion remeins confined to 8 Iixed *plxhe =% The

angular mowentum of the vehicle about the body is simply ® h. - o

We now express {2) in & slightly different form

s




Thus

Employing this result with (1) we find

P A
& 2 A A &R
'é_'_':!:.,.x h = qu(Rx a-!-r-)

and oft:e-n applying the vector triple product formula of vector asnalysis we have

A il
av - RE. R A A &y 4R
'ﬁ_“““{(“ @) F-&®- B g

Consequéntly

&
Eﬁ*x h = u"&".z;

manah
By noting that h is & constent vector and u is & constant scalor this equation

may be written as

- d
@ {Vxh)

& - %-5(“ R)




whereupon an integration leads 1o

- ) A e
Y¥xhes uR+e

vhere ¢ is another conmstant vector of inkggration. By setting
- ——
e e

we cbtain
TP = w(Ree) (3)
where © is some constant vector. This vector can be expressed as

T . 1vai-8 W
which follows directly from (3). Since V x'h is & vector lying in the plane
of motion the above relstion implies that ‘€ lies im the plawe of motion also.
Let © be the angle messured from™e in tl» positive direction (i.e.,
counterclockwise) to R. Hence in view of {(2) snd (3) we bave
2 - it -t )

— - — o —— - A 1*
2« hehRxVeRVxbs=Ru (R4 e)

™hus

h2

- = R+Recos @ = R(lé-ecosve)




Conseguently we cbtain

2
L+ e cos @
This is the general equetion of a conic with eccentricity e and semi-latus
restum / _
5
/
Jy o B | L (e
= N
r :
1 .
R = 1+ e ¢cos 8 (?)

Thus we obtain the well-lknown fact that the trajectory is & conic section.
Since (7) implies that R is smallest when 6 = 0, the direction of €

is along the direction of perihelion.
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B. The Calculmtion of ¢ and b Vectors = ... - e T

If two position vectors on & copic trajectory are known along with
1ts semi-major axis & and eccentricity e the e md-}; veciors can be calculated.

The b vector can easily be obtained from

-, EaR o]
R \/a & il-e (&)
% =%, X

- 7

vhere the chboice of signs depends upcm;§ Bl’ 32 and the direction of motion.
The calculation of the & vector can be ea.n‘ied om. by the following formuia:

:& o 'ﬁ.l + ﬁnﬁ‘a (9)
where
]bl 812 1
by 8 &y P2
o= ""'D""' " B ...................b (10}
with
¢ %- ' ' 2
'bi - N + 8 -1
4
By = 1 ' ) {(11)
. e“ql -3
aﬁnRi'Bi-rl-Ri ig4
i
.J
and . |
11 M2 |

8y P22
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The derivation of {8) is cmitted since it is immedistely cbvious but {9) along
with (10), (11) and (12) i more involved. These formulas can be established by
first noting that since the ﬁ“vector lies in the plane of motion, two moaiors

o and B exist such that (9) holds. If we denote the vehicles velocity vectors

at"ﬁlandﬁaby?lmd“\?g respectively and dot eack side of (9) by%'i?l x b
and% ?2 x -}; we obtain the following eguatioas

l’_.s — — 1..—1 e A— lM m......;

m lehe*'; lethQ'F“u'Vth‘.,Raﬁ

l — —t l s — ok 1.—* ......l.....a

% Vexhe--ﬁ Vaxh a+-;vaxh22§

By employing (3) and noting that (5) and (6) tmply

the formulss (10), (11) and {12) can essily be seen to follow.

€. ¥Yelocity Vector as a Function of :, "{; anﬁ'%

We now come L0 a very useful formula which expresses the vehicles
~ A
velocity vector in terms of the ¢ and b vectors and its unit position wvector R.

The derivation follows by omking use of the vector iripal product formuls

it —

bx{(Vxh)=(bb) V- (V)i
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Thus since V is perpepdicular to h we have

¥V =% x (‘;x“ﬁ‘)

and hence by employing (3) we obtain
?u -&2 ?x(fi-ﬁ?) (3-3)
h

As an immediste application of (13) we now derive the well-known energy equation.

With the aid (13) together with {60 we may write

Qs

— — — — e
v e % (F-tx&+V-hxe)

By the box product formulss this becomes

Y

.}

Ven-ﬁ- E_h°RxV+R(e-Vxh)§

After making use of (2) and (3) this cen be writien as

¥

1 2 N
vaa-m-. ;h -bu('ﬁecose-o-ae)!

B

Consequently with the aid of (5) this is expressed s

r -
v = _ﬁ_l_:_” [2&:2 + uR (e2 -»l)J

(33




and by (6) we obtain the famous energy eguation

ot ro
41
iy
e

Ve (1b)

where the negative or positive sign is chosen sccording to whether the trajectory
is elliptic or hyperbolic. :
Fow B 4 H

r
D. Relstions betwveen »?;;h Vectors and Claseical Orbital Elements

The vectors e and b along with the time of perhelion passage T,
completely determines the comic trejectory. These vectors represent six constent
scalors five of which are independent. To an astronomer, who is priwarily
interested in knowing wvhere to point his telescope, the ¢ld method of defining
an orbit by giving its classieal orbital elements O, 1, w, &, €, !l:_P is very |
convenient. But in Astronsutics velocity vectors pln.y’ apn jmpartant roll. The

determination of velocity vectors of celestisl bodies having orbits delined by Tl

osculating elements usually reguires slow and cuwbersome numerical ds,rtemgtation
=

.
of position vectors. By defining the trejectories in terms of osculating & end

b vectors, velocity vectors can be immedistely calceulated by (13).
The classicel orbital elembnts cen easilybbe celculated for a trajectory
descri‘b&d by e, h and '!P by referting to the following figure vwhere I is taken

1o be an ecliptic coordinate system.
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We take E to denote the point where the vebicle rises sbove the ecliptic which
is the x y plane and & asaunitwctordimt.edmmgz The point of
perihelion is dencted by P. The x axis is directed {avard the vernal eguinox
for some epoch.‘

Kov the time of perihelion passage T, is alrveady given and €| =e.
Thus, only four of the six orbital elements remein to be calculated. From (6)

the semi-major axis & can be obtained by

h2

a =
¥ |J;_-ezi
’ R RN

1‘he_ inclinetion i of the trajectory can be caleulated from the redation

1

cos 1 = g2

: -
vhere we write b = (b, by, b) and T = (e,, €5 €3). The unit vector & is

given by

i = (cos 0, sin 0, 0)




Consequently since
A - A
kxhehsini n
The longitude of the ascending node can be obiained by

sin = ety

The argument of periheliom @ may be calculsted from

A e
« &

Simtlarly one essily finds thet if s trajectory is defined by the
classical orbital elements ; the ,é and h vectors can be caleulated by the following
formuias:

e, = e(cos £):cos W cos 4 sin O sin ¢

1

azne(sinﬁ-cosw-bmimnsinw)

esuesmismw

hlahainisinn
h2-~hsinimﬂ

h. = k cos 1

3

| ——

vhere k = “\/ﬁ s |l:;gr

L}
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Belatifg Time with Position
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E. Lasbertizs Theoren

We nov come to a fundamental theorem of Celestisl mechanics known as hemberth.
theorem, 7This profound resuit will play an important roll in the determinstion of
interplanetary trajectories, IThe theorem states that the time required for 2 body
to move from a point P with position vecto;:ﬁ;_ to & point ¢ with position vector

e

Rz depends only on Rl + Rz axd the distance ¢ between P and Q.

Te prove Lambertts theorem we shall employ the Hamilton - Jacobi theory of
anslyticsl mechanics, This formulation of mechanics is very b;mtﬁu}. and containpg
many important idess which were carried over to Quartuzm mecharics, On the practical
side however, little use of the theory can be found, Thus to those who remember
the elegant mathematical structure of the Eamilion « Jacobi theory the following
gpplication shovld be warmly received,

We recall that the sclution of & problem ip amzlytical mechanics described by
the generalized coordinates Qs Ups sves Q can be obtained by simple differentiations
of Hamilton's principal function S (ql-.-qn, t, al"’“n}' The drguments g, eeea, of 5
,a{‘s’dacenstams depending of the initisl conditions. The sclution is obtained by
pifc‘}g“n;\ ‘the system .

f B = 28 £% ®1,2,00en
{}g:— ‘g;?.,\_ . :

of p equations for the generalised coordinates q; % f‘{-
- ’ —

_ q_é - qé (_G-Looc ﬂn} _\gltlt Bn3 t)

where ﬁ:-'é are additionsl gonstamts depending on the initisl conditions, The prineipal

function is relsted to the generalized moments I-".& by r
_ [
- * N :
- q. "' P, o= ‘a_"' {J c-"‘ l,.oa}l‘k

[

f_!i

% LI -

\. i
R

H P
Fy

.




consequently if

a(ql’.‘.’ qn’ p}.,.‘.d} t) . |».(.- L *.'z"‘. j
r? ; ’ {:f‘.-r,xf EF AR
v

is the Hamiltonian of the system, the originel function is obtained by trindimg the
sclution of the Hamilton = Jscobl equstion

H (qlgcoogqn’ a8 y ssey ‘C) * 38

£ 33’
1 t/""

Now in our problem the system is conservetive with energy E, Hence the Familtordan
is time independent, The problem of finding S from (88) for conservative systems can
be simplified by introducing a function W (ql...qn, al’"‘“n) by sssaming

r'C’-_
S-V-al’r : . .&ﬁ

C e ., ry s

which is mggestaﬁ by (ﬂ-). Wnen this is substituted into %22) e obtaln-semmntiely-
. }owm W v F '7)
Jifwisaaclntionaf(éﬂ”Smbeob%aimdrrm . -
" e
We now spply the sbove theory to am Lambert!s theores, Define generaligsed
poid Vo,

coordinates q, and g, by - pn

Gy ™ 1 ( nc) Qe = i ( * c) i
1 3 RZ 2 Vi B?
Oeitting the calculations, the Km:u.t.or:im?fumtion becomes
3 4 1= " 2 = 2 :3—
2 Py -3 2 iy - -
2 A
Bl may 1179 Ytz

Hamilton's characteristic function W can then be obtained by -

S

-
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it is easy to see that this equation will be satisfied if

N
(%) - (7t Y

These equstions imply

i
H“t 32 kN
,
or 3 +¢j
| ?-2. 2 \Ez
W *V‘;—f s
- - + £ dq +« g {g.)
a3 2 v 9t 2 A
N | ) _
Thus we obtain
1l (Rz - ) 1 (Bl+ ¢}
7 I R pc—
w:azj " ge + B dgy .‘:‘-2~ -'.q2+ +E dy,
1r 7 158 7
3 i 2

Since W represents the length of & geodesic in & two-dimensionsl [, c...a  wnone -

manifold where the motion takes place along geodesces, W must be positive for

srbitrary values of BI’Rz ani ¢, With this restriction W is given by




— B e
Wew:.2 - +E dgy; +:2 . + E dq
: q+ﬁ- 2
J | 2'§-
1 (Bpe) 1y

which can be combined to yield

1 (B,+c) e
- 2
Ve 2 ‘-g-;mn + E 4t
}i (R =c)

L0

If a new varishle of inbegrstion g" is introduced by letting

; R
R . ,_,w‘;.
we obtain 2 “
1 (Bfnzw)
W 2 \ ?'& E dt - (2h)
c’
.1( + -c) )
YRTRI ;;

The time varisble T which appears in (£3) is the time interval between the initisl

time Tl and sny time 'r2 ilster. Thus gince

=L
Pp=Th - o8 E
(23) implies

T-m

dE
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The beautiful simplicity of the proof now becomes evident., In view of (25) we

write
1 (R,+R ¥c) X
L (R 1 Th C
2 §
which becomes
;'.';’,-"
1 e cdsc . ('Qs')
TwV2 _
/ {
- { b I ?({ »;—./__1 Four
-“Where s is the semiwperimeter of the trisngle FPQ ™ N

S«
LR e

Now the energy E egquals the kinetic cwp}_?zplu the potential energy
2

- %— Thus in view of the sbergy egustion (1L)

_../

uhm the ncgatiw sign corresponds to alliptic orbitnj the posit!:ve sign with

4.\,

hyperbolie orbits.ﬁ?frobulic crbits E = O, In this case the orbit will tske

on the following generzl shape.
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From the sbove figuretio possiblesyeses sre evident, In the derivation of (24}
- it was tacitly -asmed.--\thnt_...tha;&ariahle of irtegration ;(doas not assmume the
:' value of gero as it goes from s = ¢ to s, &lthough it mey vanish st the end
{.. L
points, <This corresponds to the points P and Q. Now if the point M is passed
RN T
~ such that the body passes from P to Q, S = c vanishes at the Point H.: Thus
corresponding to these two core for parobolic trajectories (2§) yields
4
1 s s A
R ?I.Zu C}“dg g
“skée-‘] - A
— p—— ;o




1. s/1

R 64\9 3

o ‘ (
To o ;Sz - (a-c)zf £26)

3 va )
-;m. r'_ 3 -~ . ¥
—~ V2 ; - . A f
T - -;-'--:-:- iLS' 2 + (M)% 2
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It is easy to see that the ssme cases are true for hyperbolic trajectories,




We now come to the important case of elligitic trajectories. The detamiﬁ-
atlon of two time intervels T and "Efmnlogous to those obtained for parobolic
and hyperbolic trajectories hinge upon sn inequality between the semimperimeter
s of the trisngle FPQ and the semiemajor axis a. This inequality is

The proof fallows from an slementary theorem Irow plane geometry,

Let F Ydenote the vacant focus. Then gince

- AT -2

TWeFQ woa

we may write

25« (F+ FP) + (e FQ) +F-E*;@‘ o
| &

wihE e &

28 + (F'P + FQeF3) wha

and gince the sum of any two sides of & plane triangle is grestevior egual to

the third side, the inequality follows,
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By refering to the sbove figure we observe that if e’ coincides with M, S ={2a.
Thustiy-{267 the interval of imtegration yielding T is |

consequently

by L2 i 2a
T= 2 sds +* 2 ag ]
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T = [ B (r)(er)( g -/ T ) ] (30)

m L Wj?, W“‘"‘(—"p, Fo (2.?},/27/
a.—-—,/{ (2‘3’/ P ;/-—w-"ﬂ-—! ,é.?,_

e = fi-Esm)er)O-tA ST TTR) Y (34

(s loig o By ot Bt FR, ey
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E=f =R Gr)sr)C -t =/on /TR (22)
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JET PROPULSION LABORATORY

Whers in this case p, and g, &re those quantities sppesring in (3) - (3)e

" Interplanetary :nic mjm&sei‘-‘-"oz free fall space vehicles in the fore
seeable future will be ellipticsi, Thus if -mch a vehicle :!.s ‘bcm :l'ong an
elliptical path leaving @oint P at & time 21 and arriﬂng at apainh Qata
time ‘!‘2 the seni » najor uis of the trajeciory may be caleulated by one of the
formulas c:d)u;( ") nmithmmmtaunagmaianorthe
properties of theme functions, Moreover, in view of the energy equation {:l/),
it is particuisrly important to know how the functions compare with sack other,

Gonsider the set of all pairs of position vectors X, and K, ef points P
end Q much that R, + B, and ¢-Temain invariamt, Ocrresponding to each ‘such
palr of points P and Q let us pass all possible elliptic paths obtained by aid
possibie~abidp varying the semi-major axis a a:é eccentricity e wirich-are.assoo-
~eted with-sach.of the fommulis {%):e:(ii)« The graphs of T vs, ,c';: each of

the five functions can then be plotied for idemtical values of Ry + Rz axd ¢,




In the sbove figure TA}. and Tu are agymptotic walues which can be shown to be
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. -
Waen a = & (minimm) = ~‘-’~, the greph of (+1) joins (7)) at time %, and the greph
of () Joins (2-7) at tine Tyy. By subtituiing s = § imto ('W) or (*f' we bind"

and substituting s -'f irte (4 ) or (»?) yields

J e £y o1 gt y2 gy
o \!2;,- - \r (1-3) sin V=S =1

With respect teo }:, a vehicle on the elliptical ;pxt.h ﬁ'm a point P to & poirnt
Q corresponding to the minimum value of the semi c-.n_a;}az_'- u:i.s_-t il htva & mintmom
energy . Since ¥ = i + V' where we assume that the point P corresponds to the
position of some planet, this preperty of minimm nmrb tradecwr::bu will siso

B ~.
be M for 1&15& mernam w‘lth respect to T cenbmd tt P onl'y ar v is
T f“nbt" Cﬁ wkgrg, {a.yngzt Ewera el . /4 ‘t re!»f'a "'&‘)' fos
parallel to V* Thus xrgariioular-
pv MA{{’ MM-&{L{ g V,. 'ff}w a"'rd.,cg"fo' es f,av-J Flomi wmmifnr apit
--,s oF N T TR T e AT oY ; :

e.zu.;f a4 -L w il C’P*“'Jﬂ*ﬂ" 3}‘PP'€¢H‘?L¢{)- 'fh +F3)¢-¢f"“€f W S Iauwcl. Ene,
vin

o : -

ITI. Using the Gravitational Influence of a Passing Flenet, \-

The effort taking place in the development of space vehicies designed for the
e:q:lontioﬁ of the molar systems is rapidly gaining momentum, Receni advences
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in mary fielda suoh u aeteunrg;y, chuais‘hry und alemonios are baina applied *t'.o R
nctaal bardullrd u won as they bccom tvaila'als. -W:lth the mivaz of new aophisticatad

long lifehinberplmtazywaae craft many new mplex deep apace operations will

tle . ah L. )
be .pa-eocb}e. Such venicles equipted with,qaévanced plamta.ry upproach gnidance £ /-“7{‘? ~r
anipmert, could sccurstely control its entry into t_he vieinity of & passing planet,

If the mission does m‘b require the vthic}.e-:-bo'..ldi:d or to orbit 'bhe .planet. the maall

guidance package along with the pl:neta grmtational ixz!lnence givcs the vehide
the potential ot radically changing its t.rajactory ‘sbout the ‘sun, ' '
We now consider tha probvlex of finding & conic spproximation of the tra:)ao‘bcry
of & Iree fall vehicle in the vicinity of a passing planet such thail its infiuence
will enable the vehicle to rendezvous with amother planet.Let L' E%e:mham.w
transiation of T with new origin located st the c_enter of ‘c? planet inﬂuencing the 7
motion of the vehicle, Lst: * denote the region of gravitationai intlncme about
the planet, I¢ can be shown that v can betskcn u ] spharicnl regionwith center

st the planets cemter and radins *given by

where R is the distance betwsen the sun of mass ¥ and the planet of mass m, The
problen if formuily steted ss follows:
Suppose & free fall interplanetary space vehicle leaves gﬁe planet Pl at time 'rl

_ and makes 2 closest approach to th.g planet Pz at time 'rz. The influence of P2 then
causes the vehicle to remdezvous with 2 third planet Py { FB mgy or may not be Py
irdeed it mgy be another space vehicle orbiting the sun), The planets Py, P, md P,

along .with.‘rl and 1‘2
the hyperbolic trajectory in 7, and the elliptical transfer trejectory from P, to PB

are given, The elliptical transfer trsjectory from Pl to ,'P2 P

at the time ‘33 .are to e determined,
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The following motation shall be employed throughout this ssotions

Tl | '
(a) P, F, = the elliptical trapsfer trajectory from P; to P,
el . : :
{p) P2 P3 » +the elliptical trmsfar "I‘.ﬂéec‘hm from P2 tc"?a
Tt
(&) B (37 = “posttion vestor of F, with respect to I &t tine AL 1=1,2,3 )

(8) ¥F (3} = position vector of venicle with respect to T at times? }')

———

¥
“ee (@) T(T) = posi‘bioxz vector of whicla with respect to It at time *®

(£) :__mﬁ*(‘r) f velocity vector offpi with respect to T at time T (4 = 1,2,3)
N L T
(g) . vbé = velocity vector or’ by Witk respect to I at time of—-closest.

. - :
-

. Yo e .\
(1) ¥ (1), » velocity vector of vehicle with respect o L' st time Jy

. “" ‘ ‘ o=
(1) "V (T) = velocity vector of vehicle with respect to I' al time T -

(3 1'1*, '1‘2" = +time st which vehicle gnters and leaves 7 respectively

() -ﬁ:éli; 8y2 13 = semi « mejor axis end semi ~ latus rectom of P, P,

R ﬁg _.y;gg@eetively.

@) 1 hl; 73, '53 « E gnd E vectors of I;;\I’z and @3 respectively
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e ‘2’%’?2 = - . : - .' - ' -

_ ia mt a -rocnic :and heme "l'.hese quantities ha:'re ™ neaning)
(1) R« radins of P, | L | |

{¢) dmw distance af cloaest q:pros.ch to 'the surface_ orvP

{(r) by = B, & ﬁmn _:!.s -"bh& :mn of. I")2 tnd G he gras utiomi: mf.. __ '; prit

31 (11),_..}.\ 4 _' ;I...:".iz'(f,..)’ 2 3

are not grester than Sho" 80 that one ct :k.ha tc:ém:lw "(’\'\) - (;‘x) will alm ‘be cpplicahle. :

For definiteness m sb,a‘.u ume *.ha b

A The ?undman‘hal mua‘hion - S ” o '*
T c & ra ' B . :
P .a‘.‘o}_‘ko{as from *r.he i‘bove mtations that

,_// T e R( 't)

whence by dii‘ferentiation'le&da o R SR

‘__“......-m.._ t w A N AL, vy ap pprm————

v(‘r)- ('.r)-»v'(}’) __ | |
Bi.ncehnlf oi’ the total” tina that the ‘rchicle qmnda in v is

very smuall emparod to the period of ?2 about the sun. we nv write
Vo o ¥
FD) T e (D)

and consequently : : : :
Vv, T ap o =1,2) (i3
SE—— T e A

Since V' = V « V these equations yisld
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~ invoking - d PESE L fo
By sewcilssieg the mg equation (l ) for hyperbalictrajectories we . swWreTE

y - "2( _

g e PRI

/

The radive of * at T Which is p ( 5’ ) ETS alnost mmmf'wm; the"rldins of T at r-'

which is p ( T,). Thus the above aquatioa inpliea th;t"?the *rehicles energy w:rhh rospect

to T' as it enters 7 iz the same as its energy a.s i‘b 1msa o

——
b

3y

Tpon substituting this result into the difference of the equstions given by (') we find

vz(rﬂ-v’“(tl)-z*ﬂ@ {‘v'(t)ﬁ"(a‘)) (5)

Tgking the differance of the two equstiona given by (3 ) e htra

and substituting this result into (é; we obtain an important equation by which all three
parts of the total ‘hra;)actory can bé determined,

vzus).-vz(zl)-zvﬂ,hcm (11)) (7/

14 ahould be born in mind that this equtian in esunae 183'8 nothing ‘more ‘than ("’5’. Its
value lies in its form where the guamtities are given j&ith _roapea‘h to T axd mot ¥,




. JE? ?R‘Pmsmn m Ry

mﬂpﬁ"“’* “-raéoctcz:r Tz W .tb the penter
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-4 mmall portion oi‘ tho vahicles ‘braj ectory near Pz

o.f the "'rehicle at the t:ime“!l an :Lt mrhm 'r, B is :Lta positicn :&t

Tha pcint L 13 xhe 'pos!.‘hion.

'_ is cloaest to P

2. and the pcm _C 4 ‘bha position 'of*‘thc“vch:!xﬂ.

: *bhia portion of the 'trajectory :i.a ,hyperbolic. m 'rehicle'z miptiﬂe :zm.m;'

appear &s ptrullel vec?.ora. ﬁne dcttad 1lines &re «contimatims of JP ?'-P md. :

3.2

,--\
P 3
on tha orbits o! Pl Pz m:u:! Pz P3

i‘igare clesrly diaplu,ys me 'nry in@orbant tacts.

iy i

s the time 7, =ir, didmtsm._f-'

aani - ujor axia a?\of P ?2 ‘can bu culculated. ﬁmn by uainpeith&r.;@l\) .
M"'"""w""‘" . H

(-»>) depending npon which formuls ofls

:i‘:f (Q wae used t;o clif.h}.cu;a‘h; :3. ti-;e

()

ebcentricity e, can be found, Comoquantly since J.l ( 1 - al )“bhe veetcra
s el pfrmdline e FE Lor BE i L{“&L_& {i')-"'( ) .
eland'%eomsponia,sinilaﬁybysettingrn%-'! s B o= Rz(Iz)deza“Ej(TB)
L e »
- an spplication of Lembertts Theorem yields 8, 7.). Since T, is unknown s, is

VAT .' . L

r-bwy. ._:-:— ks
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_;va}.ues comapondixg $he tz'ial'w;lu éiven 't.o '.! hs actual'-_mne

almost :mnts.m nzh“tho hypnthetical mocity vectors x;c- Bt m ;x-r i Gomeqnently
L,\J-n\ i }" . .

| in view of ‘hhe ':rirst_ 0bsa:'uticn ‘hh&se Telacitiés cantbe abtaimd}w:} by (1}9

1\

(IZ) '.;.r(? ) ";3(1: Y —:3(? )1(32(’-' )*'3 (3))

w2 (13) v2 -2V, (v u ) -7

A

{,J, o
from vhich the wvalue of TB 880 be calcnlntad. In practice saox trigl velue of ’1:3
Fidlds tridd values of by &a2 2'3’ '3’.Eh and hence by (f"‘f‘) a trial value 'cf Vz'. -

If the trisgl wilne of T, Yielding the trisl wvalue of V2 does not satisfy ( )

3 v, . .e_;'a-

a new trial value of ‘1'3 is ccnsiderod. -Tous a systematic search for 23 oan’ be#

e ,dcd which will yield = aolu‘hion ur (9. The coz-mspommg trdal mnn'_‘"

of 3y 49 3-3 ’ e3 and h3 than becms *tha acmal vslues for Pz ?3 "'lhus sinoe '1 >




JET PROPULSION meoax T

G The Deteminatm cz tha !iypa'halic ’iraa ectory
We mv mmiﬁar ”that .*pu't mr the vahﬁ.d.as tra;}ectory .‘.:n *xi ﬁ

sitebonat okt Finting W Srajecry s ot 10 w8 | h > Hads.

A 5

-T'i e a'wv& __.‘_._t" A

—ants figure :l.s drum :Bith roq;eet t»e ’5:' ’Hmca the -*fehii:‘}.aa“-?ti*ubec‘hory dn 7 is

hyperbolic, The points A, B and € correspond to the points 4, B and C of figure {
From (“ ) we calc::late the hyperbolic excess velocity vectors at A and C,

:

NARVEY Al G P . |
vwfz")"ﬁ{” ey .




where p is one 'hnlrs__ef *theuzﬁlabewm the Mtom. . Tris -since the

eccemicity. e, is related to - ad bz by -

&

i

'

we obtein

Thus by sberving the sbove Tigurewe fimd




which is expressible -as

wo ” =0T

The distence of closest spproach which the vehicle makes with the surface .

Of‘Pz can now be cbisined by

Xfthisqnmtﬁ.tytwmtohe

mgguw the trmct.m is cbrimaly phnically r&nms.zm.. The value of 33

is then disgarded and the search contimes urmtil a Dew: T is found which yields

3.
& solution of (% ) and also a positive value for d, If the search for '1'3 proceeds

by teking incressing t.hial nlues of T, the solution will give the shortest poasible

3

time for !.'3

After '1‘3 has been determined which will give a poai‘tiva value to d, the

'na.gnitude ortheﬂvecw mbe oalculatedhy
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The position 'vec:‘oa:"u.:’ #f téze poingg A uﬂc ntiigﬂrcsﬂ( )uﬁ { )ﬂth o _
ra@acttuzcanmvhecalmlatedbymplom (%.gﬁemsp ( :l") - 4;(1'") -
%“}%’ R, ('1' ) zsince the padiicfthesphms ot Anfluence tt.tinu'rl n:ad
T T sre almost iﬂm#ﬁﬁﬁ.mﬁm‘thtf

0,,:, fa !f {- %LE ) - 3?
Jhe smount of time gwhich the venicle 'sperx!_sin wAmay be caloulated by (33 with

R o= s ("eza-.l)_

SRt ERRNES o o

él{lll

R N R L L oY)




i (1

~ Setting Ew =, (26) yields

s N
P kegy

W—uﬂ“
Jo A2
.} (g 1)l
o-c’ é\“

T ow
Y ap

iy ¢
Fe Y T
S . ‘%i‘} S il il

B

= ‘ ) == =
¢ (C*1) =) '; ° /(gf +1) w1
; -1

X N T
By defiming ¥ = L+ 1 these integrals can be written as
€y "
s 2
S G e
LR
o {‘:'i .3
bt \\ o H(;a ) ‘\\_,,_,,_.....,.. QQ -
T 5?12 a8 e (2512 )
T < R -1
1 1 B
& ‘ . - SArTryer
whm\* .E._.... + 1 andp, g+ 1, Caredng out the integration leads to
- o ’_?"
“ON ) - .
T -"% __.g..-...{pi:l ~ cosn % Py = &2 -1 + com™ N (283~
~ i3 2 . L 1,2 «1 -
- ._%_ fg =1 = cosh ™ p, *Rg "1~ cosh T gy (z9Y




