SUPERVISOR CALL

Control Data 6600. Glenview, I11.: Scott Fores-
man.
1971. Bell, C. G., and A. Newell, Computer Struc-

tures; Readings and Fxamples New York:
MocGraw-Hill.

1972. Hintz, R. G., and D. P. Tate. “Control Data
STAR-100 Processor Design,” Compcon 72,
IEEE Computer Society Conference Proceedings
(September), pp. 1-4.

D. J. Kuck anDp D. H. LAWRIE

SUPERVISOR CALL

For articles on related subjects see INTER-
RUPT; MULTIPROGRAMMING; QPERATING
SyYSTEMS; PRIVILEGED INSTRUCTION: and
SUPERVISOR STATE.

A typical operating system has a set, of system
programs collectively known as the “supervisor,”
whose function it is to provide services for and to
supervise the running of a number of user programs.
Control goes to the supervisor every time the normal
flow of processing is interrupted by a change of state
in the system.

The purpose of a supervisor call is to provide a
mechanism whereby a program can interrupt the
normal flow of processing and ask the supervisor to
perform a function for the program that the program
either cannot or is not permitted to perform for
itself.

The most typical supervisor calls have to do
with input and output. In a multiprogramming
system it is essential to have system control of
input/output devices, especially those devices shared
by a number of programs.

Most computers that were designed for multi-
programming systems have a supervisory mode of
operation and hardware interlocks that prevent cer-
tain supervisory operations from taking place except
when the computer is operating in supervisory mode.
This may be handled by means of special privileged
instructions that can be executed only in supervisory
mode, or only in some other way,

In the IBM 360/370 systems, for example, a
supervisor call is made through the execution of an
instruction whose effect is to create an interrupt. The
instruction is 2 bytes long. The first byte is the
supervisor-call instruction code, and the second byte
describes the nature of the supervisor call. This
second byte goes into a special register which is used

1382

in connection with all interrupts to transmit infor-
mation to the system as to the status of that
particular interrupt.

The intarript now procsade liks any other
interrupt. It stores the status of the computer (the old

program status word) and loads a new status that
gives control to a resident supervisory routine, which
operates in supervisor mode and whose function is
the handling of supervisor calls. This routine then
analyzes the second byte of the supervisor-call
instruction and determines the nature of the call.

It is, of course, possible—and usually essential
—that additional information is passed to the su-
pervisory routine as a result of the supervisor call.
This information may be in special registers (general
registers) or in an area of memory pointed to by a
special register.

The supervisor may have resident routines for
handling certain classes of supervisor calls, and may
have available areas of central memory (transient
areas) into which overlays can be loaded for the
handling of less frequent supervisor calls. Fast
response to supervisor calls is usually an important
factor in system performance, and systems that have
large amounts of central memory can often improve
their responsiveness by increasing the number of
resident supervisor-call routines.

S. ROSEN

SWAC

For articles on related subjects see DIGITAL
CompuTERS: Early; and SEAC.

SWAC (National Bureau of Standards Western
Automatic Computer) was dedicated in August
1950, and at the time of its dedication was the fastest
computer in existence. It was begun in January 1949
at the National Bureau of Standard’s field station,
the Institute for Numerical Analysis at the Univer-
sity of California at Los Angeles, and was designed
and constructed under the direction of the author.
Originally named the ZEPHYR, due to its modest-
sized budget and staff as contrasted with much
larger projects being carried on elsewhere, it was
later renamed the SWAC.

The SWAC was a parallel computer using
Williams® tube (cathode-ray tube, or CRT) memory.
The memory cycle was 16 us consisting of an 8 us
action cycle and an 8 pus restore cycle (where some

t infor-
of that

¢ other
(the old
tus that
:, which
ction 18
ne then
isor-call
e call.

ssential
the su-
sor call.
(general
to by a

ines for
nd may
ransient
for the
Is. Fast
1portant
1at have
improve
nber of

. ROSEN

TAL

Western
August
e fastest
ary 1949
station,
Univer-
lesigned
. author.
modest-
h much
, it was

ar using
memory.
an 8 us
re some

Fig. 1. The SWAC.

other memory location was restored). An addition of
37-bit operands occurred in 64 ps, and multipli-
cation occurred in 384 us. Due to technical diffi-
culties with Williams™ tube storage, the memory was
never increased beyond 256 words. A 4,096-word
magnetic drum was added to the system with
coordinated addressing so that block transfers of 32
words between the two memories occurred with no
latency.

Initial input and output was by typewriter and
punched paper tape. These were soon replaced by a
card reader (240 cards per minute) and a card punch
(80 cards per minute). The SWAC used a four-
address command structure. A floating-point inter-
pretive system named SWACPEC was developed,
which made it much easier for users to write
programs.

In 1953 the SWAC was producing about 53 hr
of useful computing time per week. SWAC was used
in a research computing environment, and therefore
many of the problems tended to be quite large.
Solution times from 177 to 453 hr are reported by
Huskey et al. (1933). Some of the early problems
included the search for Mersenne primes, the
Fourier synthesis of X-ray diffraction patterns of
crystals, the solution of systems of linear equations,
and problems in differential equations.

When the National Bureau of Standards ccased
to support the Institute for Numerical Analysis, the
SWAC was transferred to the University and moved
to the Engineering Building at UCLA. There it

SWAPPING

continued in useful operation until December 1967.
Parts of the SWAC are now on exhibit in the
Museum of Science and Industry in Los Angeles.

REFERENCES

1951, Huskey, H. D. “‘Semiautomatic Instruction
on the Zephyr,” Proceedings of a Second Sym-
posium on Large-Scale Digital Computing Ma-
chinery. Cambridge, Mass.: Harvard University
Press, pp. 83-90.

1953. Huskey, H. D., R. Thorensen, B. F. Ambrosio,
and E. C. Yowell. “The SWAC—Design Fea-

" tures and Operating Experience,” Proceedings of
the I.R.E., Vol. 41, No. 10 (October), pp.
1294-1299.

H. D. HUSKEY

SWAPPING

For articles on related subjects see MEM-
ory: Auxiliary; SCHEDULING ALGORITHM;
TiME SHARING; and TIME SLICE.

For articles on related terms see ALGO-
rITHM; and WORKING SET.

Swapping is a process found most frequently in
time-shared computer operating systems. It 1s used
to move programs between primary storage (usually
core memory, but integrated circuit memories have
recently become common) and secondary storage
(drums or disk files). Swapping i1 necessary to
maximize the efficient use of valuable primary
storage where programs must be located in order to
be executed, but which cost an order of magnitude
more than secondary storage.

When the operating system locates a program in
a “waiting” state—i.e., one that can no longer use
the CPU normally because it is waiting to complete
an [/0 operation—it swaps the program to secon-
dary storage, replacing it with another program that
is ready to use the CPU. In time-sharing systems, the
longest waiting state occurs as the program awaits
input from the relatively slow typewriter, Teletype,
or similar terminal.

The time-sharing systems of the early 1960s at
M.LT.. The RAND Corporation, Systems Devel-
opment Corporation, and Dartmouth College
contain examples of the swapping process. In these

1383

