ROUND-TRIP TRAJECTORIES to MARS and VENUS *
Geza S. Gedeon **

Two types of round-trip trajectories are treated;
"swing-around" trajectories, requiring no additional
propulsion near the observation planet and "orbiting
round-trip" trajectories, requiring propulsion to enter
into a planetocentric orbit and to leave it after a speci-
fied waiting period, These problems are attacked by a
new and very simple calculation procedure based on the
"Lambertian Mechanics' ! concept. The method pres-
ented is easily adaptable to an automatic digital com-
puter, and thus it eliminates the tedious labor involved
in constructing auxiliary charts and drawing envelopes
to find optimum solutions,

Finally, in addition to the results in the usual form of
graphs of total trip time versus characteristic velocity,
the complete set of departure conditions is presented,
These values can be used as good approximations to the
initial conditions required by a precision orbit calcula-
tion routine,

INTRODUCTION

Exploration of outer space will undoubtedly start with inspection of the
two nearest planets, Venus and Mars. The three steps probably requir-
ed to accomplish this purpose are: (1) sending an instrumented package
to these planets, (2) orbiting a crew around the planets, and (3) landing

and returning a man from these planets, The second and third steps

# 1

obviously involve round trips, However, it can be shown that "swing-~
around' trajectories offer many advantages over a one-way trajectory,

even for the first phase, For example, the spacecraft would not be re-

*Presented at the eighth annual meeting of the American Astronautical
Society, January 1962,

*%*Head of Astrodynamics, Northrop Space Laboratories, Hawthorne,
California,
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quired to carry long-distance communication systems. Long read-out
times on a home orbit or recovery of observations are permitted, and

the penalties associated with the extra propulsion requirements at the
planet are removed. For these reasons it was deemed advisable to under-
take an analysis of round-trip trajectories only.

3

Swing-around trajectories were first proposed by Ehricke et al. 2 Battin
investigated a class of trajectories having velocities of departure re-

stricted to values producing total trip times in the two-to-three-year
range. Johnson and Smitl’lqt have made the very interesting disccvery
that trajectories of l~to 1.5-years duration can be realized with velocity
requirements which are feasibie with present day technolpgy. This last
publication is, to the writer's knowledge, the only one dealing compre-
hensively with swing-around trajectories, presenting both swing-in and
swing-out trajectories for different values of closest planetary approach,
Unfortunately, as confirmed by private communication with the author

of that paper, a programming error has resulted in certain errors in

the results presented,

The second class of trajectories, the so-called orbiting round trips, in-
volve a stay on the planet or on a planetary orbit, i, e,, the space vehic!
moves in heliocentric space with the same speed as the planet for a pre-
scribed waiting time, To accomplish this feat, it is necessary to apply
propulsion at arrival in the planetary vicinity and at take-off from the

planet or planstary orbit, Unlike the swing-around trips in which total

tely define the trajectory, an in-
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finite number of orbiting round-trip trajectories are possible for a given
total trip time and orbiting altitudes, This being the case, it is logical

h for optimum solutions, Moeckel® made the first step towards
optimization by employing transfer trajectories which 2»a fangent to the
heliccentric orbits at departure. He found that nonsymmetric trajectories
yield considerably lower trip times than symmetric ones for equal fuel

y . - : i
requirements. Johnson and Smith took the next logical step by removing

the tangency requirement. They utilized a set of working charts and a




graphical optimization technique (envelope drawing) to obtain optimum
orbiting round-trip trajectories to Mars., It is important to note that
they realized that optimum round trips do not consist of two optimum
one-way trajectories; rather, the optimization is utilized to determine
the two segments into which the total trip should be divided. Johnson

and Smith utilized a set of orbital equations developed by Moeckel

(based on perihelion radii and velocities), Dugan6 repeated the study

of Martian round-trip trajectories using Vertregt's7 method (based on
eccentricity and semi-latus rectum) and extended it to cover VenutianB

round trips. His method also utilized a set of working charts and graphi-

cal optimization.

In this paper, a new method of calculation based on the '""Lambertian
Mecha.nic:s”l is presented, The advantages of this method are twofold,
First, the equations are continuous, i, e., they provide a smooth trans-
ition between the routes called, by the earlier authors, direct, perihe-
lion, aphelion, and indirect, Second, the equations are so simple that
no intermediate working charts are required, and the optimization can

be readily performed by an automatic digital computer,




i : - NOMENCLATURE
: Symbols
that ,
# GM = force field constant
num
N _— a semimajor axis
4 e eccentricity
nson &
1 r " radius
s tudy : q -%a = modulus
a3 65 ; .-f-?ﬁ c chord
iutian 3 i semiperimeter
d graphi- 2
w :I:JI - c/s = shape factor
tian r z —-;—a = (f-.-} q = argument of universal time equation
vofold,
. trans- ; Vh -l heliocentric circular orbit velocity at radius r
erihe- TR
4 v £~ planetocentric circular orbit velocity at radius r
le that P r
can v V : ;
= K . °orTVY = heliocentric or planetocentric Kepler number £
Kb © hyperbolic excess Kepler number "
2 AK Kepler number increment
t time, mean solar days
L round-trip time, mean solar days ‘
n ; _ﬂsfr = heliocentric angular velocity i
i
8 true anomaly it
4
& € transfer angle ‘l
e T;
7 Lambert's first angle £
i
A Lambert's second angle ! ‘
@ angle of elevation j
Y angle between chord and radius .:i
|
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g angle between hyperbolic excess velocity vector and the
heliocentric velocity vector of the planet

" angular deflection at hyperbolic encounter

§ angle measured from planet-sun line to planetary radius at
departure from parking orbit, positive in direction of motion 5

- 1, 3¢5; i (2n=1) AL = T .

An 2 T — $2n) : AO = 1 coefficients of the universal

time equation
k + 1 switching constant

Subscript

o conditions at Earth

S semiperimeter ‘l
S Sun

E Earth :

h heliocentric

p planetary or planetocentric

w waiting

1 outward leg

2 homeward leg

a asymptote
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ANALYSIS
Assumptions

The following assumptions are utilized in this analysis:

(1) The orbits of Earth, Mars, and Venus are circular and
coplanar,

(2) The vehicle is attracted by only one inverse-square central
force field at a time, No account is taken of transition from
one sphere of influence to another in the vicinity of a planet,
and the point at which the spacecraft enters or leaves the
heliocentric force field is taken to be identical to the
planet's position,

(3) The impulsive velocity-change concept is applie

(oW

(4) Characteristic velocity rather than mass ratio is used as

figure of merit,

Swing-Around Trajectories

A typical swing-in trajectory is shown in Fig 1. A trajectory cutting
the planet sun line is designated a swing-out trajectory while one pass-

ing outside this line is designated a swing-in trajectory.

The analysis starts by assuming a heliccentric velocity vector at arrival

=y

to the vicinity of the target planet, The magnitude of the velocity is ex-
pressed by a unitless quantity, the Kepler number K,. In Ref, 1, the
source of many of the following equations, the Kepler number is defined
as the actual velocity dividend by the local circular velocity. In this

case, the latter corresponds to the heliocentric orbital velocity of the

planet. The direction of the velocity vector is given by the angle of

elevation @ 1-

Knowing the arrival velocity vector with magnitude and direction denoted

by [Kl' (}51! and the planet's assumed circular velocity vector [1, 0] s

the hyperbolic excess velocity K™ © can be calculated simply as the

reiative velocity with respect to the planet,
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K = \/1-2K1cos¢1+Kl (1)

h. e.
1

proach velocity on the asymptote of a planetocentric hyperbola. The

On the enlarged view of point M it can be seen that K is the ap-

spacecraft departs along the other asymptote with hyperbolic excess

velocity, th' & , having the same magnitude as th' R
The gravitational attraction results in a deflection angle, , which is
Kh' e, 4 =
cscK/2 = +1, 0 £ &! (2)
Vp,fvh 2 2

The above relationship is derived in Appendix A,
In this equation, V_ is the planetocentric circular orbit velocity at
closest approach and V, is the heliocentric velocity of the planet, The

h. e.

angle ¢ included between KI and the heliocentric velocity vector of

the planet is obtained from

£ T .
5 i p 0~|6‘|&;} - P {41{3}
sin ¢ = sin A : cos
1 ) -r = 1
Kln. e, _fz _C_ Ia'ls iT} 1 1 > 1 y
th' ¢ makes an angle (7 + A4 ) with the planets heliocentric velocity
vector,

Now, the departure velocity vector can be calculated as the resultant of
the heliocentric velocity of the planet and the hyperbolic excess velocity

at departure by the relationships

h. e . 2  h.e. . 2
K, = \/[1 Ky cos (Fxk) ] "+ [;{2 sin (tfﬁ:K]] (4)
and
_ th' ® sin (¢ xk) |
tan @, - e o owllag 4 T (5)
1 - K, cos (7 +k) 2 2 2
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Knowing the velocity vector at one end of the trajectory defines the or-

bital segment, Thus, according to Ref, 1, the two moduli g, q  are
given by
1
> q
a =Lleo=%k?, g =— (6)
2 r/r
and the transfer angle € by
1-4q/q
tan €/2 = = ee® 41T (7)
l-q 2 -
q o 9 2
-tanﬁﬂ:-q—o 5 sec @ -1
v l-g

The + sign in the above equation is due to the fact that conics are sym-
metric around the line of apsides, In one case the trajectory contains
one more apsis than in the other., Note that the above expression is
based upon angle of elevation at the target planet, contrasted to the
equation of Ref., 1, which was base_d on the initial angle of elevation,

The difference between the from the fact that the

naught subscript is maintained, describing conditions at Earth, To use

Eq. (7) for the second segment, the departure velocity vector is rotated
i. 2., the sign of -,’2‘?2 is reversed, One thus has two orbital

segments originating from the departure and arrival position of the Earth

and meeting head-on at closest approach to the planet,

Next, according to Ref. 1, the transfer times t; and ty are calculated

by first determining the chords cj and ¢, from

c
w & j1+ (r/r )2 - 2(r/r_) cos €
To o o
(8)
the semiperimeters s; and s, from
1+ r;"r0+ C,/ro
s/t .= > (9)
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(9)

o Hdeld B

+

he shape factors W and w, from

o

and, finally, the transfer time from

2/ 2
M 2/ 4
(s/r
)

1 - 1 1

L.g the heliocentric angular velocity of Earth and

] S
Z oz = =) q
2a s o

. 1 t}
i ieos fd ..o ith
tan ¥ = s1in fin3 " or4 " q
r/rTy - cos € isubt:'act 2ifrom ¥

and then compared with 200, The criterion used in Ref,

the end conditions in the following manner,

Y>(-20) o= g

i

1=
)

1’((-2@) Lk:-l

(13)

1 is adapted to

Since Eq. (7) is double valued and there are two segments, four individ-

ual trip time values are calculated: t, ' i ! "

-1.1.1,1:2,[2,

=

See Ref, 1 about the convergence of above series,

the first two




corresponding to the first leg and the last two to the last leg. If any of

the four combinations satisfy the requirement that
(tl S tz} np = {'El + 62)

where np. is the angular velocity of Earth in the same units as t then
departing from Earth at the correct date, the returning space vehicle

will intercept Earth at the end of the trip,

If none of the combinations satisfies Eq. (14), then one of the initial as-
sumptions must be changed, Kl can be kept fixed and @1 varied between

arbitrary limits (high @ | means high propulsion requirement) or @ 1

Thus, care must be exerted to find both solutions,

If a solution to Eq. (14) is found, the constellation angle can be calcu-

lated from
IVI :el-n t1 (15)

where B nE;’{rKrO)SKZ is the angular velocity of the planet, It is sup-
posed that departure will be made from a geocentric parking orbit in the
plane of the ecliptic. The amount of velocity increment necessary for

departure can be calculated in the following manner,

First, the departure Kepler number is given by

K, =J2Al-q) (16)

and the angle of elevation at departure by

(1-4q9)gq

cos 950 = » cos @ (17)

(1- qo) q,

Note that the sign of sf)o is undetermined; it agrees with ¢ if the number

of apsides in the trajectory is even (0 or 2), and differs from ¢ if this

number is odd, The number of apsides may be determined from the

nature of the problem,

This ambiguity can be aveided by using Eq. (27) .

fixed and K| varied. Both solutions are double valued in certain regions.
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Next, the hyperbolic excess velocity Koh' €. is obtained by Eq. (1) and

then the heliocentric Kepler number incrementbKo from

\' A%
h.e..2 p s P
AK = (B ) 2l S e (18)
(o] o _,Vh E -'Vh E

where (VP)E is the geocentric circular velocity on the parking orbit and

(Vh)E is the heliocentric velocity of Earth, Thus, 4 Ko is normalized
with respect to the Earth's heliocentric velocity (18, 5 mi/sec or 29. 8

km/sec),

The point of application of this impulse is assumed to be the vertex of
the geocentric hyperbola of departure, To find the angle 60 between the
axis of this hyperbola and the Earth - Sun line, Egs. (2) and (3) are em-
ployed again, using departure data (naught subscript). The angle 50 is

given by

6‘0 = (6, - K/2) (19)

The calculation of dKO and 50 can be repeated for the return point, and
a characteristic velocity can be obtained by adding together the two im-

pulses,

Orbiting Round Trip Trajectories

Figure 2 shows an orbiting round-trip trajectory, During the given
waiting time t_, the spacecraft moves through the angle éw with the

angular velocity of the planet in heliocentric space where

= t
€, nt

(20)

The total angle € swept out by the Earth during the round trip is defined

by the givez total trip time ¢t

€ =€ +e'_w+62=n t (21)

1 E
This last equation serves to define only the sum of the transfer angles

€, and €,, rather than the two angles individually, It is part of the opti-




Fig. 2 An Orbiting Round Trip Trajectory

mization procedure to find each of the angles. Thus the calculation be-

gins by assuming an €, and a trajectory parameter of the first segment,

This fixes the transfer time, and an optimization subroutine varies e‘l
and the trajectory parameter until minimum characteristic velocity is

found,

The trajectory parameter selected can be either the modulus q or the

argument z defined in Ref, 1, These quantities are interrelated by

2 ° (22)

where (s/r) is a constant if € is fixed, The choice of z is preferred
since it has a fixed upper limit = + 1, which is a convenience in auto-

matic machine calculations,
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The calculation starts by computing the chords < and <, by Eq. (8), the

semiperimeters s and S5 by Eq. (9), and finally the shape factors W

and w, by Eq. (10).

The trip time t; can be calculated by Eq. (11). However, ts is defined

by the relation

tpht, +t,=t (23)

and therefore Eq. (11) should be used to calculate Z,. This appears to

be a very cumbersome procedure, At the outset, it was hoped that a

good approximation to the inverse of Eq. (11) could be found., Unfortun-
ately this has not yet been realized. Therefore, a trial and error pro-
cedure has been used in programming this problem., For trial and error

solution, Lambert's Equation in the form illustrated below was used in

place of Eq, (11).
(e - sina] - (ﬂ - sinp]
n_t = (24)
E 2z 3/2
: s/ro
4! where
;. 1
& = (1-k) T+ 2k sin ~ 2 (25)
and
- | + fore< @
= =+ —_ 2
P sin w Az {-forf:?” (26)
: Equations (24) through (26), along with Eq. (23), were used to solve
directly for ty and by trial and error for z5. The constant k1 Ck
associated with the first leg ] was an input, kl = +1 producing fast
elliptic outward segments, and k = -1 allowing slow trajectories, The

second constant kZ E{ associated with the second legr‘; was selected by

the program, If no root has been found with ka = +1 then the machine

switched automatically to kz = -1 to find z5. No provision was made for

parabolic or hyperbolic orbits since, in the total trip time range inves-




tigated, elliptic segment solutions were possible with considerable

smaller fuel requirements,

‘As soon as z, was found, it was converted into the modulus q, by divid-
ing by s/r. Then the Kepler numbers at the four endpoints of the two
segments were calculated by Eq. (16) and the angles of elevation by the

following equations

1-qq : Ji1-a,) (ay/a) - d cos? e /2

t =
- ¢O tanE;Z sin &/ 2

o \I{I-q)(qf’qol - q(1-q cos’€ /2)

tan — - f 8
? tan €/2 sing/2 We

Note that the constant k must have the same value in these equations as
used in Eq. (25).

Knowing the velocity vectors at the four endpoints (again both segments
originate from the Earth and end at the planet at the arrival and depar-
ture position in heliocentric space ), the hyperbolic excess velocities

can be found by Eq. (1) and the Kepler number changes by Eq. (18).

Finally, the characteristic velocity (normalized to ecliptic speed) is

BAK; +8K,

— . RpEy (29)
V(x/x,)

To find minimum characteristic velocity, €, and z; are changed by a

Veu/ (Vg = 8Ky 1 +

subroutine utilizing a '"gradient or steepest descent' method of optimi-
zation. When the minimum characteristic velocity is found, the depar-
ture conditions are calculated by the same procedure as in the case of
swing-around trajectories, 1. e,, the confiiguration angie is obtained by
Eq. (15), and the velocity increments for departures from an Earth orbit

and from a planetary orbit by Eqgs, (3) and (18).
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RESULTS AND DISCUSSIONS

Solutions for Swing-Around Trajectories

Figures 3 and 4 illustrate velocity vectors (K, ¢ ) at planetary encounter

which produce round-trip trajectories originating and terminating at

Earth under the assumption that the closest approach to the (center of

the) planet is 1. 1 planetary radius. Figures 5 and 6 illustrate several

cases of particular interest,

Before attempting to explain the above solutions it is advisable to dis-

cuss the characteristics of those unperturbed trajectories which emanate

from and return to Earth. One solution is obvious; all orbits having a

semimajor axis identical to that of the Earth's helioccentric orbit (1 au)

will intercept Earth a year later. Thus, the modulus of such an orbit

at planetary encounter is one-half the mean radius of the planetary orbit

expressed in au's. Then, Eq, (16) yields a heliocentric Kepler number

at Mars of 0, 6909 for all unperturbed one-year orbits, These orbits are

represented by the vertical dotted line on Fig. 3, In the following

K

sketches of unperturbed Martian orbits (Fig. 5), empty circles corre-

spond to possible locations of massless planets. The filled circles

i i

correspond to planetary locations for which a perturbative analysis was

T

carried out. The number 2 represents launch points for one-year orbits,
The numbers 3 and 4 represent planetary locations at encounter, Num-
4 ber 5 designates an extra crossing of the Earth's orbit, and 6 the arrival
position, For example, sketch (A) illustrates an orbit departing from
Earth at point 2, passing by a massless Mars located at point 3/4, and

returning to Earth at point 6 which is exactly coincident with the depar-

5 EL

ture point,

However, one-year orbits do not constitute the only family of unper-

turbed orbits which intercept Earth at return. Martian orbits which
overlap at perihelion can also be constrained to return to Earth by proper

choice of the semimajor axis. The term 'overlapping' designates double
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passes through perihelion for Martian orhits. The dotted curve on Fig, 3
illustrates such a family, and sketch (B) shows a particular trajectory of
longer than one-year duration. It should be noted that for overlapping

orbits, departure occurs at point 1,

Should the space vehicle pass outside the planet-sun line, the one year
orbit (A) is perturbed into a swing-in trajectory, sketch (A). Similarly,
if the vehicle cuts the planet-sun line, a swing-out trajectory results
(sketch D), The full line curves on Fig. 3 passing through points a and
d were obtained from analysis of perturbed one-year nominal orbits
.having higher eccentricities than (A). The corresponding dashed line
curves represent mirror image trajectories, i.e., trajectories origi-
nating at 6 and terminating at 2. Such orbits can be envisioned as those
obtained by reversing both vehicle and planetary motions. Hence, they

will be designated clockwise trajectories.

Perturbing the overlapping orbit (B), produces trajectories (c) and (e).
Likewise, increasing the eccentricity of the original orbit results in
curves passing through points ¢ and e in Fig, 3. Although both sets of

curves were not drawn beyond ¢ = * 45°, solutions do exist beyond these

values,

Each set of the trajectory is distinguished as between those which cross
and do not cross the Earth's orbit; designated indirect and direct, re-
spectively, It should be noted that these same adjectives have been used

by other authors in a more restricted sense., Thus, the perturbed one-
year orbits are considered direct-indirect, whereas the perturbed over-

lapping orbits are indirect-indirect,

Martian trajectories passing 2 and 5 planetary radii from the center of
the planet were also investigated, Solutions similar to those illustrated
in Fig. 3 were obtained., However, since the perturbation from a two-

body orbit is smaller, deviations from the dotted curves are less pro-

nounced,

il il i S
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Figure 4 illustrates the much more complicated swing-around Venus £

trajectories, The vertical dotted line corresponds to one-year orbits

in a manner wholly analogous to the one-year Martian orbits illustrated

in Fig, 3. As in the case of Martian orbits, empty circles in Fig., 6
correspond to possible locations of massless planets, and filled circles
to planetary locations obtained from perturbative analysis. Sketches (C)
and (E) represent minimum eccentricity (tangent to Venus' heliocentric
orbit at fly-by), unperturbed one-year orbits, Sketches (D) and (F)
illustrate minimum eccentricity overlapping orbits. For Venusian tra-

: 7 EWY: : "
jectories the term%verlappmg ’des1gnates double passes through aphelion.

For these trajectories, departure always occurs at point 1, extra-Earth
orbital crossing at 2, planetary encounter at 3 or 4 and arrival at either

5 or 6, Should planetary encounter occur when the Earth and the planet

at encounter are on the same side of the line of apsides of the first orbital
segment, the perturbation is called co-apsidal and the number 4 is used.

In the other case, the perturbation is called anti-apsidal, and the number

3 is used. The definitions of co-apsidal and anti-apsidal perturbations,

as based on departure and encounter positions, hold true if vehicle and
planetary motions are reversed, i, e,, if departure occurs at 6 and

arrival at 1 or 2. Unperturbed overlapping orbits of longer than one- 1443
year duration are represented by the dotted curve on Fig, 4. It should 3
be noted that the vertex of this curve is much closer to the straight ver-

tical line than in the Martian case,

Unlike Martian trajectories whose ¢ vs, K graphs were found to be con-

tinuous, discontinuous solutions were found for all perturbed Venusian

{
trajectories (Fig. 4). These discontinuities were found to occur around 4
small angles of elevation splitting the curves into two parts correspond- 1

- e

ing to co-apsidal and anti-apsidal perturbations. The upper and lower

halves of Fig. 4 correspond respectively to co-apsidal and anti-apsidal

e

perturbations for counterclockwise trajectories as illustrated on Fig. 6.

- My

The analysis of clockwise trajectories is omitted on Fig. 4 because of

g bt

609




the obviously greater complexity of Venusian as compared with Martian
trajectories, Considering first the anti-apsidal case, the curves gﬁh and
;;‘;:' can be regarded respectively as swing-in and swing-out perturbations
B I of one-year orbits, Similarly, ’1?1 and 1,)?1 may be regarded as representa-
tions of perturbed overlapping orbits, In the case of co-apsidal pertur-
bations, 3?: and on were obtained from perturbations of one-year orbits,
andﬁ and fan from perturbations of the overlapping orbit. It should be

noted that k, n, q and h, representing tangential Earth arrival, are

common points for pairs of curves. Such points do not exist if the per-
burbation is small, i, e,, they do not appear for a closest approach of

5 Venusian radii.

Examination of Fig, 4 and the subsequent charts reveals a similarity

in appearance between co-apsidal swing-out and anti-apsidal swing-in
trajectories, For this reason, both types of trajectories will be desig-
nated as the First Family of swing-around Venus trajectories. Similarly
coapsidal swing-in and anti-apsidal swing-out trajectories are grouped
together as the Second Family. Figure 6a presents the First Family of
swing-around Venus trajectories, Sketch (C) illustrates an unperturbed
highly eccentric one-year orbit with (g) and (j) representing trajectories
obtained by anti-apsidal swing-in and co-apsidal swing-out, respectively,
Highly eccentric overlapping orbits are perturbed into trajectories (i)
and (1). Similarly, (h) and (k) are obtained from less eccentric one-

year orbits,

Figure 6b presents the Second Family of swing-around-Venus trajector-
ies, The symmetric trajectories (m) and (p) are obtained by perturba-
tions of minimum eccentricity unperturbed orbits (E) and (F), respec-
tively, Trajectories (n) and {(q} reprasant cases when arrival is tangen-

tial to the Earth's orbit. Finally, (o) and (r) illustrate highly perturbed

one-year nominal orbits,
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Characteristics of Swing-Around Trajectories

Figures 7 through 12 illustrate the characteristics of swing-around Mars

and swing-around Venus trajectories, These charts present four items
of interest: total trip time, constellation angles at departure and en-
counter, and velocity increment required to depart from a geocentric

circular parking orbit with radius equal to 1, 1 Earth radii.

Figure 7a and 7b illustrate two classes of round-trip Martian trajectories;
the lower curves indicating tréjectories of about one-year duration, the
upper curves trajectories of about 1 1/2 to 1-3/4 years., A swing-in
trajectory of somewhat less than 1-1/2 year duration exhibits the mini-
mum velocity requirement (~ 4 mi/sec)., Figures 8a and 8b illustrate

the constellation angles at departure, It is interesting to note that these
angles are grouped into three different ranges, one extending between

90° and 180°,and two narrow ranges grouped around 0° and 180°, There-
fore, departure is possible during one quarter of the synodic year when
Mars leads Earth and during a short period of time near inferior con-
junction of the planets., The lower velocity requirements are associated
with Martian lead angles of 106° to 126°. Figures 9a and 9b present
constellation angles at planetary encounter vs, round-trip time. Such
information is important in determining communication distance between
Earth and vehicle at planetary encounter. Comparison of Figs. 7a and

9a illustrates the fortunate happenstance of minimum communication
distance (zero constellation angle) occurring with minimum velocity re-
quirements and shortest total trip for the longer than one-year family,

If one knows constellation angles at both launch and encounter, he can,

\ by means of a very simple calculation, determine the transfer times for

o each leg, Each transfer time is merely equal to the quotient of the change

of constellation angle and the difference of planetary mean motions,

t :‘?"V’o

n

-nE




For Venusian orbits, the second family of swing-out trajectories, Fig,

10d exhibits the most favorable combinations of trip time and velocity

requirements. The duration of these trips is between 3/4 and 1-1/4

years with velocity requirements at departure as low as 2, 2 mi/sec,

The range of constellation angles associated with these conditions lies

between -50° and -200°. Thus,favorable departure is possible during

almost half of the synodic year. But as can be seen from Figs, lla

through 11d, trips can be undertaken at any time if velocity increments

up to 10 mi/sec are available, The comments regarding Figs. 7a and

9a for Martian trajectories apply also to Figs, 12a and 12b for Venusian

voyages,

Initial Conditions for Swing-Around Trajectories

T L

This section concerns itself with the initial conditions required as input

R
i

for an n body precision orbit computation routine, Both initial and ar-

b

S

rival conditions are needed, as the latter lead directly (by reversing the

sign of the velocity vector) to initial conditions for clockwise trajectories.

It was decided to present conditions at closest planetary approach rather
than in terms of Earth departure and arrival conditions, This reduces
the required amount of data by half, since the arrival and departure con-
ditions at closest planetary approach are identical and both legs of the
trajectory may be obtained by running forward and backward in time,
Even more important, any errors resultant from the numerical calcu-

lations are now split into two segments rather than accumulating for the

the entire duration of the mission, Therefore, the following data are

presented: constellation angle at planetary encounter, location of closest

approach (vertex of the planetocentric hyperbola) and velocity at this

point expressed in units of planetocentric Kepler number, As explained

above, these data can serve as initial conditions for both legs of the

mission for precision calculation routines by running time in both posi-

tive and negative directions, If the resultant trajectory cuts the Earth's

orbit either ahead or behind the Earth on both ends, the location of
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closest approach should be adjusted. If, on the other hand, the trajec-

tory branches "'straddle' Earth, the velocity magnitude should be mod-

ified to achieve impacts. *

Characteristics of Optimum Orbiting Round-Trip Trajectories

Figures 13a through 14b present the characteristics of Optimum Round-

Trip trajectories to Mars and Venus, involving waiting times of 0, 10,

20 and 30 days. During this waiting period, the spacecraft travels ona

planetary parking orbit of 1, 1 planetary radius. The orbital character-
istics illustrated in these figures are: round-trip time, constellation

angle at departure, and characteristic velocity (sun of the four impulses).
Minimum characteristic velocities are obtained for zero waiting time

for trip times of approximately 500 days for Martian and 420 days for

Venusian trajectories. These velocity requirements are 13.1 mi/sec

and 10, 2 mi/sec for Martian and Venusian voyages, respectively. Wait-
ing time increases the characteristic velocity requirements for Martian

trajectories but does not affect the trip time associated with minimum
characteristic velocity, For Venusian voyages, waiting increases the

round-trip time associated with minimum characteristic velocity., How-
ever, the velocity requirement increases less severely than for Martian

trajectories.

Figures 13b and 14b yield the interesting result that, for short and long
round-trip times, the optimum orbiting round-trip trajectories consist
of symmetrical segments resulting from the fact that the clockwise and
counterclockwise segments are identical, This symmetry does not hold
for trip times of intermediate duration, The constellation angle range is
restricted to allow for departure during about 2/5ths of the synodic year
for Martian and over 1/2 of the synodic year for Venusian trajectories.

Figure 15 shows round-trip trajectories for Mars and Venus,

* For accurate charts,apply to Northrop Space Laboratories and cite
NSL62-83.




Initial Conditions for Optimum Orbiting Round~-Trip Trajectories

This section concerns itself with the initial conditions at departure from

a 1. 1 Earth radii parking orbit. The characteristics shown are: con-
stellation angle, velocity increment, and departure point location. Full

line curves represent initial conditions for counterclockwise trajectories,

dashed curves for clockwise trajectories, *
Constants

The following constants were used in the trajectory calculations:

Radius of Parking Orbit Earth Mars Venus

i

Rp/Rp ---- 1 1.52369 | .72333
Jl' 1 .25323 | .14 . 199 3
Vp/Vy 2 . 1039 | . 1476 51
5 ---- . 0657 | .0933 k
l/ng 58, 134778 3
days/radians :

Non-Coplanar Trajectories

o R sk

In the body of this report the assumption was made that the trajectory of

the vehicle lies in the plane of the planetary orbits which were, in turn,
assumed to be coplanar, In Appendix B, the necessary modifications
for adapting the initial conditions to the non-coplanar case will be dis- !

cussed,
REFERENCES

1. G. S. Gedeon, ""Lambertian Mechanics, " Proc, XII Internat, Astr

naut, Cong. Also, "Orbital Segment Machanics, " Norair report

ASG-TM-61-42R

K. A, Ehric:ke,_c. M. Whitlock, R, L. Chapman, and C, H. Purdy,

""Calculations on a Manned Nuclear Propelled Space Vehicle'", ARS

*See earlier footnote



Preprint 532-57

R. H. Battin, '""The Determination of Round-Trip Planetary Recon-

naissance Trajectories,'" Aero/Space SciSept. 1959

P. G. Johnson, and R, L. Smith, "Round-Trip Trajectories for

Mars Observation,'" Advances in the Astronaut. Sci, Vol, 5, Plenum

Press, 1960

W. E. Moeckel, "Interplanetary Trajectories with Excess Energy, "

Proc, IX Internat Astronaut Cong, Springer Verlag, 1959

J. F. Dugan, Jr., '""Analysis of Trajectory Parameters for Probe

and Round-Trip Missions to Mars,'" NASA TN D-281, 1960

M, Vertregt, "Interplanetary Orbits'" J. Brit, Interplanetary Soc.
Mar-Apr 1958

J. F. Dugan, Jr., and C. R. Simsic, ""Analysis of Trajectory
Parameters for Probe and Round-Trip Missions to Venus, "

NASA TN D-470, 1960

G. S. Gedeon, "A Minimal Set of Orbital Equations, " Norair report

ASG-TM-61-63




APPENDIX A

HYPERBOLIC ENCOUNTER

e

ﬂ

3

é

The true anomaly of the asymptote is found by equating the radius to
infinity in the defining equation of a conic section
.;‘:

(1-e2) a

r = (1A)

l1+ecos @

yielding




lius

to

(1A)

(24)

e .= \/1 - 4q (1l-q) cos? @ (3A)
where q is defined as r/2a and called the modulus. At periplanet, the
closest approach to the planet, the angle of elevation is zero and there-
fore

e = 1-2 (4A)

In the same reference the relation between the modulus and Kepler

number is given as
K =  2(l-q) (54)

Thus, the eccentricity expressed by the periplanet Kepler number be-

comes

. & K 2.1 (6A)
P .

and, finally, the true anomaly of the asymptote is

1 (TA)

From the sketch, it can be seen that half of the deflection angle K is
Klz=98_-90° (8A)

Therefore,

-

0 —¢<.

sin K/2 = -cos 8, = (94)

KT
2™ 2’

Now the vertex velocity is the square root of the sum of the square of
the escape velocity and the square of the hyperbolic excess velocity, If
unitless velocity expressions are used, the heliocentric hyperbolic ex-

cess Kepler number Kh. e.

must be converted into a planetocentric
hyperbolic excess Kepler number., This is accomplished by applying

the (V_/V.) conversion factor

P h

> Kh.e. 72
Kp =2+ —T (104A)
P
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Combining Eqs. (94) and (10A) yields

Kh. e, 2

csc K/2=|" <
foVh

i

3
&
g |
*
|
*
i

:
&
4
T
;.




(11A)

APPENDIX B
NON-COPLANAR ENCOUNTER

This appendix is concerned with obtaining initial conditions for non-
planar spatial trajectories made necessary by the fact that the planetary
orbits are not coplanar, Planetocentric hyperbolas which are "skewed"
with respect to the planetary orbit plane will yield such type of trajec-
tories, In order to utilize initial conditions obtained in the coplanar

analysis, the following assumptions must be made:

1) The vertex of the planetocentric hyperbolas should be on the

sun-planet line,

2) The earlier obtained (K, @, 0’)1 > sets are to be maintained
intact, Utilizing above assumptions, one finds that the de-

flection angle X' will be larger than the K associated with
the coplanar case if (K, Cb,(}}, and (K, (D,d’]z are to be pre-
served. Simple vector algebra yields the relationship be-

tween &' and K as

tan K/2

tan K72 cos i

Now Eq (9A) can be written as

tan K/2=
K B
p KP 2

Letting K'p designate the planetocentric Kepler number at closest ap-
proach which produces the deflection angle X', Eq (2B) can be rewritten

for prime values and then combined with Eq (1B) to yield

S T -2
K! K -2=K K= 2
P/ p P/ P

(3B)

cosi

625 !




1/2
| & : '
= [1+ J1+K2{K2~2}coszi
P P P

Also, by combining Eqs (10A) and (4B) one obtains
Kh‘ e.

M P

Therefore, the results of the coplanar investigations remain valid if KP

(5B)

and the radius of closest approach are modified according to the last two
equations (before inserting those as initial conditions into a precision

trajectory calculation routine).

The plane changes i, and i.?. (in heliocentric space) with respect to the

1
planetary orbit plane are obtained from the following relations:

t h.e
; T 52 : b e . ..
Kl sin (}.‘)1 sini = K cos K'/2 sini = KZ smgﬁZ sin i, (6B)

From this last equation, it is evident that in general i.1 + 12, and hence

a net plane change was affected by the gravitational field of the planet

without exterior propulsion,
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