In terms of ¢, %, and 4, {a:;) is given by

@y w5 sin g sin z + cos £y €os z cos @
dyz 7 08 £y Sin 2 — sin {p cos z<os 8
@y T - C0s 7 sin @

dgy = sin by cos 2+ cos {sinzcos B
2z == €08 £y €08 Z - sin &y 5in 2 cos @

dyy == - sin 7 sin

@y, = cos {p sin &
dyp T sin cg Sin g

ds3 7 cos 8

& == 23047997T 4 0730277 + §U017977
z = 230479977 + 170937% 4 Q701927
g = 200472987 — (V426T ~ §U0416T°

with T the number of Julian centuries of 36,525 days past
the epoch 1950.0.

The actual computational form of {a;;} is obtained by
expanding the a;; in power series in {,, z, § and replacing
the arguments by the above time series. The results are

4y = 1~ 0.000296971% — 0.0000001313

dya == M ay TEoe {}.02234988T - 0.{}00{}0676:{‘2
+ 0.000002217°

gy = = ayy = — 0009717117 + 00000020773
+ 0.00000096T°

a9z 7 1w 0.00024976T% — 0.00000015T°
Ay ™ ayy = — Q0001085977 — 0.000000037°
a5y = 1 0.000047217° + 0.000000027°

The calling sequence has the form
(AC} = days past (* January 1, 1950, E.T.
CALL ROTEQ
{(OP) XY

X3, X—2 X~1 contain the input vector; Y3, Y2,
Y1 contain the output vector; X = Y is permitted.

OP = PZE regards X as 1950.0 and rotates to date in
Y; OF == MZE regards X as of date and rotates to 1950.0
inY.

The matrix {a;;) is saved in the COMMON locations
AA, ..., AA + 8 and recomputed only when the time has
changed by 1/64 day.
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The subroutine uses three cells of erasable storage
starting at COMMON,

NUTATE

To describe the nutation of the Earth about its pre-
cessing mean equator, it is convenient to construct the
nutation matrix N which relates the Cartesian coordinates
expressed in the true equator and equinox to those in the
mean equator and equinox {Sketch A-15).

P

z

ECLIPTIC
Y

MEAN EQUATCOR
.y

TRUE EQUATOR

Sketch A-15. Relationship between true equator
and mean equator of date

8¢ is the nutation in longitude measured from the true
vernal equinox at the X7 axis to the mean vernal equinox
at the X axis. € is the mean obliquity, while ¢ = € + 8¢ is
the true obliquity where 3¢ is the nutation in obliquity.
Numerical expressions for the above quantities appear in
the discussion of subroutine MNA following.

H N is defined in the sense

X! X
Y I =N Y
z A

where the primed system is the true equator and equinox
and the unprimed is the mean equator and equinox, then
the N,; are given by

Ny = cosdy
Niy= sindy¢cos€

Ny = sindysin€

Nay = sindy¢cose

Nop = cosSfcos €cos € + sin€siné

&7
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Ny == c0os8 ¢ COs€sin€ — sin€cos €

Ny, == gin8 ¢sine€
Njp = 088 ¢ 5in €cos € ~ cos €sin €
Ny = cosdgsinesin € + cosecos €
Since | 8¢ | < 10" and |8e[ < 107, the N,; are ex-

panded to first order in 8¢ and 8¢ to obtain a form which
is hetter behaved for numerical calculation:

1 —~8gcos €  ~Bysin€
N=1 5ycos€ 1 —8€
Sysin€ §¢ 1

NUTATE is used as a utility routine to generate the
matrix product NA, where A is obtained by cailing
ROTEQ; the resultant NA is used to rotate from the
equator and equinox of 1930.0 to the true equator and
equinox of date and is saved in the COMMON cells
{NA),...,{NA) + 8. As N is a slowly varying matrix,
it is saved and recomputed only if the time has changed
by at least 0.1 day. The generation of N is effected by
calling MNA which also internally stores N.

MNA, MNAI1

It is the principal function of MNA to provide the
rotation matrix MNA which allows vectors in the 1950.0
system to be expressed relative to the Moon's true equator
and conversely.

For this purpose it is assumed that the matrix A has
been formed by ROTEQ and appears in the COMMON
locations AA, ..., AA <+ 8. The form of the matrix N (see
preceding discussion of NUTATE ) depends upon the
nutations &y and 3¢ In the discussion of XYZDD to fol-
low, M is identified as (bi,).

The numerical expressions for the necessary quantities
appear below:

3¢ = A€ + de, where Ae¢ denotes the long-period and
de the short-period terms for the nutation in obliquity.
In a similar manner the nutation in longitude 8y is given
with long-period and shert-period terms Ay and dy.

Ag = 2595844 X 10 cos 8 — 092511 X 10 cos 202
+ 195336 X 10t cos 2L + 090666 X 10 ¢cos {3L —T7)
—~ Q%0238 X 10 cos (L+ T}
=~ 070183 X 10~ cos (2L — £1)
— 020067 X 10~ cos (217 — Q)

68

de = 092456 X 10 cos 2 € + 0%0508 X 10 cos {24 ~ Q)
+ 0%0369 X 107%¢cos (3¢ — I}
-~ 0203139 X 107 cos ( { + )
- (20086 X 10 cos ( € — IV + &)
+ Q%0083 X Wicos (€ - [¥ — )
+0%0061 X 10%cos (3¢ + I — 2L)
4 000064 X 10V cos (3¢ — Y — )

i

— (4798927 + 00482 T) X 107%s5in 2

+ (94800 X 10 sin 20k — 395361 X 10sin 2L
- (%1378 X 10~ sin (3L — )

+ 0%0594 X 10sin (L + )

+ (%0344 X} 10 sin (2L —~ )

+ 090125 X 10%sin (21" — )

4 0°35G0 X 10%sin (L — )

+ (%0124 X 10 sin (2L — 217}

ay

dyp = — 025658 X 10sin 2«
- (20950 X 10™*sin (24 — 12)
— 020725 X 10™sin (3 ¢ — ™)
+ 090317 X 10 sin ( ¢+ I™)
4 020161 X 107 sin { € ~ IV 4 )
+ 020158 X 104sin { { ~ 17 ~ )
—~ %0144 X 10~%sin {3 + Y — 21}
-~ Q20122 X 107%sn{ 3¢ — [¥ - )
+ 091875 X {0*sin { € ~ IV}
+- 090078 X 18sin (24 — 2F*)
+ 090414 X 10*sin ( ¢ + ¥ —2L)
+ 090167 X 10*sin (24 ~ 2L)
— 020089 X 10+¥sin (4 ¢ — 2L)

0= 1291127902 — 0205295392224 + 200795 X 10T
+ 20981 X 10 7T% + 0202 X 10+ T*

Q== 64037545167 + 13717639652684d — 11931575 X 10+ T
— 1193015 X 10™ T2 + 02019 X 10+ 7°

I == 20898439877 + 091114040803 4 — 020103347
- Q2010343 7% — O%12 X 10+ T*

L= 280°08121009 + 0798564733544 + 3203 X 10™ T
+ 3 X 10T

T" = 282708053028 + 0%470684 X 10 d + 495525 X 1947
4 47575 X 10477 + 0203 X 16+ 7T+

T is the number of Julian centuries of 36,523 days past
the epoch 0" January 1, 1650, E.T,, while d is the number
of days past the same epoch. The program uses 4 in
double precision. The mean obliquity is caleulated from

WA
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€ = 23%4457587 — 0°01309404 T — 020088 X 10~ 7*
+ 070030 X 10717

The quantity 3a = 3¢ cos € is computed and stored in
the COMMON cell NUTRA for the GHA routine to use
as the nutation in right ascension for caleulation of the
true value of the Greenwich hour angle of the vernal
equinox,

The librations are given by
osinl = -~ 020302777 sing + 070102777 sin (g + 2 w)
— 0200305555 sin (2g + 2w)

r = — 0°003333 sin g + 0°0163888 sin ¢’
+ 02005 sin 2 w

p= — 000297222 cos g + Q0102777 cos {g + 2w}
- 0200305555 cos {2g + 2 «)

I= 19335

The following expressions have been programmed for
g ¢, and o

g = 215954013 + 13°0649924
£ = 3582009067 + 09856005 4
w = 196745632 + 0216435864

Evidently g = ¢ — I, the mean anomaly of the Moon;
g = L —T', the mean anomaly of the Sun; and & =T" — 0,
the argument of the perigee of the Moon. All quantities
relate to mean motions of the Sun and the Moon,

cos = ¢os (3 + o 4 8¢ ) sin€sin {4+ 5)

+ cosecos (I +p), 0<i<CH°
siol¥ = —sin (O + o+ 8¢) sin (I + p) oscid,
- 9% ¥ < 90°
sin A = —sin {Q 4+ o+ 8¢) sinecsc
cosA = —sin(Q 4o+ 8)sintceose

w cos ({34 o+ 8¢ cos, 0 A <3607

A=A (C+g) = (Q+ o)
w € + B¢
The calling sequence to MNA is
{AC) = fractional day past 0" of epoch T in ET.

(MQ)} = integer days past 0" January 1, 1950 of the
epoch T

CALIL MNA
PZE 1,A
PZE 1.8

The cells A, A + 1, A + 2 contain the 1950.0 position
vector R = (X, Y, Z), while the output vector r = {x, ¢, 2}
in the Moon-fixed coordinate system is placed in the loca-
tions B, B 4+ 1, B 4 2. The coordinate transformation is
given by

X
= MNA| ¢
z Z
The inverse fransformation
X
v | = (MNA)
zZ z

is indicated by
CALL MNA
PZE 1A
PZE 0,B

A, A+ 1, A+ 2 contain r and the output R is placed
nB, B4+ 1, B2

If MNAI is called instead of MNA, the matrices are
not recomputed unless time has changed by 0.01 day.

The subroutines use four cells of erasable storage
starting at COMMON.

MNAMD, MNAMD1

As it is necessary to form the Moon-fixed velocity, the
subroutine MNAMD has been provided to accomplish
this task. As in the preceding discussion of MNA, the
formulas for transforming positions are

x X
y = MNAl v
2 Z

for the transformation from 1950.0 position to Moon-fixed
position and inversely,

X
vy | = (MNAY

Z z

for the position transformation in the other direction.

3]
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To obtain velocity transformations, the above formulas
are differentiated and the approximation is made that

N=A=0
Thus

= MNA +MNAL v

5‘ A
P e B
N e 3
N e

and for the inverse transformation

Ne G D
b3

= (MNAY | 5 )+ (MN4Y
z

z

In computing M the rates for the slowly varying angles
" and i are taken to be zero.

M= (M)

where

ﬁ;{u = (- sin Acos (¥ — ¢cos Asin Q' cos i) A
1’;1” = (—sin Asin € + cos Acos Y cosi) A
M,y == (cos Asini) A

Mo, = (= cos Acos 2 + sin Asin € cosé) A
Mo, = (= cos Asin ) — sin A cos O cosi) A

Moy = (— sin Asing) A

f’s{‘uwo
My, =0
4433320

From the formula
Am A { {4 ) — {3+ e)
obtain
A=A+d+i—0-%
The adopted numerical expressions for the rates are

w08 (@ + o+ 8y) sine (O + &)

A= sinscos &
¢ = 0266170762 X 10° — 0.12499171 X 10T rad/sec
0 = —0.1069698435 X 1077 + 0.23015329 X 10- T rad/sec
Foe= - 01535272946 X 10%cos g
+ 0569494067 X 107 cos g*
+ 0.579473484 X 107t cos 2 w ad/sec
70

& = - 3.520642191 X 107 ¢cos g
+ 1811774451 X 107 cos (g + 2w)
—0.1064057858 X 107" cos {2 + 2g) rad/sec

The calling sequence to MNAMD has the form

{AC} = fractional day past 0* of epoch T under
consideration

{MQ} = integer days past O' January 1, 1850, E.T.
to Tin ET,

CALL MNAMD
FZE 1A
PZE 1,.B

PIE 1,C
The 1950.0 position vector R = (X, Y, Z} is input to cells
A, A+ 1 A+ 2 while the 1950.0 velocity vector V =
{X,Y,Z} occupies locations B, B + 1, B + 2. The output
vector v = (%, 4, ) isplaced in C,C+ 1, C + 2

If the inverse transformation is desired, the calling
sequence is modified to read

CALL MNAMD
PZE 1A
PZE 1,B
FZE 0,C

The Moon-fixed position vector r = {x,y, 2) occupies
cells A, A + 1, A + 2 as the Moon-fixed velocity vector
v= (%, § %) uses B, B+ 1, B + 2 for input. The 1950.0
velocity vector ¥V = (X, Y, Z) is the output and is placed
inlocations C,C + 1, C + 2.

The alternate entry MNAMDI differs from the entry
MNAMD in that the matrices M and M are recomputed
only if time has changed by 0.01 day.

The subroutines use four words of erasable storage
starting at COMMON.

3. Ephemeris

INTR, INTRY

The subroutine INTR assumes a high-density ephem-
eris tape on A8 with 20-day records of 586 words in the
following format;

etk

i A b
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7, integer days past O
January 1, 1930, ET.
(floating point)

X AT, X AT, 88X (1))

Y (T, &Y (T, 8Y (T gegcentric block

Z (T, 8Z (T, 8#2(Tp) |17 020

Xo(Th), 8X o (T, #X (1) time interval is 1 day

Yo (T5), &Y o(T5), Yo (Ty) | 378 words

Z (T3, BZo(Th), 8Z(T))

Xo{Th), 88X (Th), X, (T))
Yo (T, 8Y o (T5), 8#Y (T
Z o (T)), $24(Ty), $Z4(T))
X (T, 82X 4 (T, 8% (T
Y (T, 8Y (T, 8Y (ThH
Z (T)), 82, (T3), 82 ;(T1)

heliocentric block
== 0,4 8 12,16, 20

time inzerval is 4 days
216 words

{Nine words per time poing
representing what was the
Earth-Moon batycenter used
in an older version)

Xy (T5), X4 (T5), X4 (T))
Yo (T, &Y (TH), ¥Y, (1))
Z (T, 8Zy(T5), $Z,,(T))

o

The iast word of the record is the check sum for the
previous 595 words.

From record to récord the time must be incremented
by 20 days. In addition, the time on the frst record T»
and the time on the last record T, are subroutine param-
eters which give the base point of the ephemeris and
also a check for time out of the range of the ephemeris,
The symbolic locations are TFIRST and TLAST for T
and T, respectively.

The lunar coordinates are assumed to use the Earth
racius as a unit of length, while all other coordinates are
expressed in terms of the Astronomical Usit. As the pro-
gram runs in km, conversivn factors are provided at
SCALE! for the Earth radius and SCALE2 for the Astro-
nomical Unit. The rectangular coordinates are assumed
to be expressed in the mean equator and equinox of the
epoch 1950.0 E.T., the beginning of the Besselian year.

As the argument of the tables is E.T. (Ephemeris
Time) and the program uses U.T. {Universal Time}, the
subroutine E.T. is used to form the double-precision
ephemeris time in sec E.T. = U.T. 4+ AT, where the con-
stant AT appears at GRAV—2 and thus may be input
via INP1 in the symbolic mode.

Beginning at GRAV, a list of gravitational coefficients
for the bodies appears in the units km?/sec®. As a func-
tion of the central body, certain sets of these coeficients
ave provided for the subroutine BODY in the COMMON
list XBO, .. ., KB6. The following illustrates the transfers:

Central body Effective noncentral bodies
Earth Moon, Sun; Jupiter if Ry, 210° km
Moon Earth, Sun
Sun Earth, Moon, Venus, Mars, Jupiter
Venus Earth, Moon, Sun, Mars, Jupiter
Mars Earth, Moon, Venus, Sun, Jupiter
Jupiter Earth, Moon, Venus, Mars, Sun

The entry INTR takes as argument the double-precision
seconds past 0" January 1, 1950, UT, stored in T, T + 1,
makes the conversion to E.T., and interpolates as a func-
tion of the central bedy on the required coordinates for
the bodies listed above. There are two conditions under
which actual interpolation takes place:

1. Central bedy has changed
2. Time has changed

tf neither (1) nor {2) is satisfied, then INTR gives an
immediate return.

In contrast with INTR, the entry INTRI always inter-
polates; in addition, this entry obtains the positions of ali
the bodies in terms of the central body instead of the
selective list used with BODY. The positions appear in
the COMMON bank XN. Additionally, INTR! numeri-
cally differentiates the positions to obtain the velocities
which are deposited in the bank XN. in COMMON.

Positioning of the ephemeris tape on A8 is accom-
plished by the following scheme:

LUT < Tror T & Ty, an error point is given and
ABORT is called,

H T & Ty 4+ 20, where Ty is the time on the record
currently in core, the tape is searched in a forward
direction until the correct record is found. If the
tape has not been previously read, a dummy T
causes a forward search.

135

3 UTe T < Ty + 20, interpolation proceeds.

4. If T < Ty, the correct number m of backspaces is
calculated.
a, If m £ 15, the tape is backspaced m times and

proceeds to do a forward search.
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b. ¥ m > 13, the tape is backspaced 1 flle and a
forward search is undertaken.

After the correct record has been found, it is read into
core and both check-summed and redundancy-tested.
Reading of the desired record is attempted a maximum of
16 times, after which an error comment is printed and
ABORT is called, In the forward search the ashove two
tests are not made,

The following Everett’s formula is used for the inter-
polation:

- L A—
y(:} ) {gyo Es tyl} e {f..(.“_a?l 823;“ e isi'ii_l-l 52?1}

L HE = DA i

where
Yo = y(Tj)
yr = y(T; + b}
& = ephemeris interval
)= T bT;
uw=i—y

TST<T+ b

To obtain a formula for the velocity, the above Everett’s
form is differentiated and scaled:

. 1 dy{(: H
T m;»ﬁfi—’wy{wwi}

1 3“2 - 1 " 3;2 -1 "
+ ‘5{“ T ety 8%}

+3{“5w—1wt+4

Sy + 3¢ — 152 + 4 S‘y,}

A b} 5t

The ephemeris tape currently used has the following
modified differences for the Moon:
82y = ¥y — 001312 8% -+ 0.0043 &%
Sty = &'y — 0.27827 5%y + 0.0683 5%y
Thus 82 and § ) are used in the Everett’s formula instead
of 8 and & to provide for the influence of the higher
differences.
The following constants are used:

ER. = 6378.165
AU = 0.149599 % 10 f K™

72

we = 03986032 X 108
wg = 04900759 > 18
o = 0132715445 X 107
po = 03247695 X 10°
g = 04297780 X 10°
py = (0.1267106 X 108

km 3/ sec?

The subroutine uses 20 cells of erasable storage starting
at COMMON.

4. Encke Method Colculations

ENCKE, ORTHO

The subroutine ENCKE has been provided to per-
form the caleulation of the Encke contribution to the
aceceleration

%(mwp“@

where R = R, + p. The solution R. for the positien in
the two-body orbit is provided by KEPLER, and is saved
from step to step 50 that a new R, is calculated only when
the time has changed; thus XEPLER is called normally
once per integration step while using the Adams.-Moulton
predictor-corrector.

F{Q) =1 — (120} is calculated from the series
expansion

FQ) =0 40
f=o

where

dg == 3

ay - "'"'?.5

an = 17.5

a4y = —39 375

ay = 86625

4y == — 1876875

a == 402.1875
and

- —p_-
o= P (l% +- 2)
Ry

The expansion gives accurate results for | Q| = 0.0% if

the limit is exceeded, an error print will be given and the
trajectory will be terminated. Normally, Q grows slowly

enough so that rectification may be performed at the end

A
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of the integration step; however, for wild trajectories the
error procedure has been observed to occur.

ENCKE deposits the true position R in the COMMON
cells QX, QX 4+ 1, QX + 2 and the acceleration term
p/R3 (R F(Q) — p) in the cells CX.,,CX..+1, CX..+ 2.

At the osculation epoch T, the subroutine ORTHO
provides the Encke scheme with initial conditions:

P (Ts) = R(¥o} — Ro(To)
F-’ (Ts) = V(To) — Vo(Ts)
p {T.} is placed in the COMMON cells CX, CX + 1,

CX + 2, while p (T} is placed in storage locations CX,,
CX. + 1,CK. + &,

CONIC

The subroutine CONIC supplies the Encke machinery
with the necessary orbital elements given an epoch T,
and the Cartesian position and velocity vectors R, and V..
Under certain circumstances described below the derived
elements are nonosculating,

The computation starts with the formation of the angu-
far momentum ¢, given by

aW=R, XV,

If ¢, > (0.99€)R,V,, where € = 0.5 X 107, the orbit is
considered nonrectilinear and the subroutine proceeds in
the normal case. However, for ¢, 5 {0.99¢)R,V,, V. is
replaced by V* given by

V:mVal:\/l—e”sgn (B.Q-Ve)%'—-}-ehl:l
1)

where

......L....._(Y - X5, 0) # X5+ Y20
M e W 03 0 o o )

{1,0,8) otherwise

and the routine cycles back to recompute the angular

momentum. Observe that ¢ * =RV, so that V* is accept-

able; of course, V' =V, and ¢ = c,.

Next come the elements

I .
p == «ﬁ- , the semilatus rectum

2 “ » e
¢s = Vi — ..ﬁif, , the “energy” or vis viva integral
¢
eie
1 — g% mm ;2 2

At this point the eccentricity ¢ is computed and tested:

o= {VI — {1 — #*} if radicand > 9,

0 otherwise

if the computed ¢ is smaller than 0.01, then a circular
orbit is assumed and the remaining elements are made
consistent with the assumption of ¢ = 0, There follows in
quick succession

g = %? , the closest approach distance
A= R Sial the pericenter parameter
(1+eyz€P P

g= L , the mean motion for the pericenter method
2q°

a = Tal’ the semimajor or transverse axis
£

stai
4

#
3|

, the mean motion

=

b= a\/TT — ¢ |, the semiminor or conjugate axis
and Bnailly,
1—e&f

L+ ¢

1 ==

It remains 1o calculate P and Q along withaT =T, — T,
and to make the two sets agree sufficiently so that the
Encke starting values will not be too large.

Ife =0

_ R, _ WXR, _, _
P»»Re mde—|WxRoEmzh.&T—{}

Otherwise, the vectors are constructed:
eR2 P = (eRocosv) Ry — (e Rysinw) WX R,
eR? Q= (eRysinvo} Ro -+ (e Rocosvy) WXR,

Divide by R,, and normalize the resultant vectors to
obtain P and Q. The expressions involving the true anom-
aly at epoch are calculated from

ER{;COSWO m? i Ro

. I
ERQSH}‘UQ = _1R0'Vo
’ll

To obtain AT, the applicability of the pericenter
method for | A | < 045 is tested. w, is formed accord-

ing to
5in v, .
nr—————— If cos v a 0
— 5 2 + COs ¥y ¢ ==
1y =
1 —cosv, .
sin vy
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and tested. If [ tw, [ 22 Wi, then
]
g&T B Z ay {A} w.):z'F
=0

where the coefficients a;( A} along with wq,, are given in
the discussion of the subroutine PERI.

Whenever | wo | > Wuay, the eccentric anomaly and
Kepler’s equation are resorted to, The scheme is divided
into two cases according to the value of &

{1} & < 1, elliptic case

The following expressions are constructed for the
eccentric anomaly:

ecos By = § - &3»
&

Ro'Vo
5\/!53!

from which E, is determined.

& Sk Eo =

If | esin Ey ] £ 1 ¢ cos E, |, then the auxiliary vari-
able E*® is constructed:

R,-V,

E* = sip™ Sir = e < ¥
a8 §¢3[ 2 2

Then E, is given by

. R,
- A mrprerr
5 = {E i1 -2 50
wsgn {E*} — E* otherwise
On the other hand, i [ ¢ sin E, [ > | e cos E, |, then

Ee Ecos*‘-—i—-(im«%’»), 0<E* <m

with
Ey=sgn (R, V) E*
Fipally, AT is calculated from

RV,
el

nAT w= By~ gsin By = By —

{2) ¢ > 1, hyperbolic case

The eccentric anomaly F, is found from the re-
fation

R.- ¥V,

— =z @
Ve,
Fo=sgn (Ry Vo) In{jal + 1+ o)

ES%M]FQ =

74

Then AT is obtained from Kepler's equation:

#AT = ¢ sinh Fy — Fo 5w — F,

QUADKP

The subroutine QUADKP was written to provide an
iterative solution to Kepler's equation for the elliptic and
hyperbolic cases using a second-order gradient method.
However, only the machinery for the latter case has been
atilized in the main program for the Encke solution.

Let Kepler's equation be represented in the hyperbolic
case by

fF) = ¢sichF —F — M, M=n{(T—T,)

Then for the approximate solution F; the Tavior series
expansion through second-order terms may be used to
obtain a new estimate F;., of the root f(F} = (.

Q= f(F;+8F;) = f(F) =~ f(F};)

SF;
+8F f(F) + “‘Tf"(f’;)

Solving directly for the roots of the quadratic,

2f(E;)
—fUFy = NERF) — 2HF) 7 (F))

where the minus sign is taken before the radical to insure
that 8 F; — 0 as f(F;) ~» 0; for a wild guess, however,
the radicand may become negative, in which case the
radical is replaced by zero. With a good initial approxi-
mation the latter case arises only infrequently,

SFj mF‘."; ‘"”F} —

A similar result may be obtained for the elliptic case,
namely

f{Ey =FE —esinE— M

Convergence in either the hyperbolic or elliptic case is
evidently given by

Fiu —F = O ((F; — F)*)

The program is made complex by the attention neces-
sarily paid to obtaining a good initial approximation for
starting the higher order iteration scheme and the be-
havior of Kepler's equation when ¢ is near 1 and M is
small,

The initial approximation is obtained as a function of
eand M:
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M
(1) e > 21, P,; = E—w"{'
sgn (M) min{t,inmzlj%g} fIF.]>1
Fs, | F3,
B, = =t =
*Z\p, — B3 IR, =1
g == 1 FEX Pf’i
+ B
. 5 T

(1 ireration by Newton's method )

() 12es11

{sgn(M)msn{l,anlm} 1M1 >
B, = e
{GM}¥™  otherwise
{3) 09 <z
B, = (6M)™
(4) 0<es09, Ey=-H
=
25 Xsgn (M) H{E,|l>3
E3_EY
= 31 2! .
By == ( By 1“8-{“%_& leEdi..ﬁ._?’
2 21 41
(1 iterstion by Newton's method )
(5) e=¢g
E,=M=E

In the iteration scheme, a modification occurs in the
numerical evaluation of f, f, and §f for the hyperbolic
case,

(1) lch}F;i < 198
eSiﬂhF_f - F:} = (sinhF; - P}) + (g~ 1} SiﬂhF;

5
. " Fjs {al)iu ij i
soh By = Fy = 37 Lo i T 31 ("3"7">
iz

sinh F; = Fj 4 (SinhFj ""F;}

(2) For|F;| <228

L)
Fi sy _@or (ﬁzf_)‘
27 L (BT 2)

2t
in0

g —coshF; = {z — 1) — {coshF; — 1)

cosh F; — § =

The power series developments are employed since the
quantity 1 — ¢ is regarded as an independent orbitat ele-
ment and ¢ is made consistent with this choice. For small
values of F, underflow is avoided by choosing fewer terms
in the expansions,

Additionally, if M = 0, F is set to zero and no iteration
is performed. The calling sequence has the form

(AC) =M
(MQ) =1
CALL  QUADKP
DEC

PZE A

(ERROR RETURN)

For the elliptic case, it is assumed that A has been
normalized so that [ M | S .

The location A contains a positive number for the ellip-
tie case and a negative number for the hyperbolic case to
choose the correct form of Xepler's equation for the recti-
linear orbit.

As a convergence criterion, € = 3 X 10* has been
chosen to apply such that the normal return is given with
{AC) = F or E whenever | f(F,} | <elMland F = F,
for the hyperbolic case, or | f(E;) | < €| M | and E = E,
for the elliptic case. However, if the process fails to con-
verge to within € in N == 50 iterations, the following com-
ment is printed:

QUADRATIC METHOD FAILED

M ¢ Fj{orE;}  f(Fy) [or f(E})]

and the error return is given with (AC) = F; or E,.
Generally, convergence is obtained in five or fewer itera-
tions, After the first ime QUADKP has been called in a
phase, subsequent initial approximations are obtained by
using the solution at the previous time point.

The subroutine uses eleven words of erasable storage
starting at COMMON.
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KEPLER, PERI, SPEED

KEPLER is the subroutine which provides the solution
to the two-body problem at the epoch T. The necessary
elements are assumed to have been provided at the oscu-
lation epoch by ORTHO and CONIC. Different methods
of solution are chosen according to the following criteria:

1. The pericenter methad is used whenever
a. [A] <045 and
b, {we | ZgAThm

2. QUADKP is used for £ > 1 and if item 1 is not
satisfied.

3. If the conditions in item 1 are not met and if ¢ < 1,
then the methods described below for the ellipse are
used,

As the orbital elements furnished by CONIC are non-
osculating if true osculating elements give nearly recti-
linear resuits, the case for « = 1 and ¢, 5% 0 need not be
treated.

Pericenter Method

The first problem to be solved in the pericenter method
is the determination of w from the formula

L
1+ &
“’*”""3‘7“7»”/ RESvOrly
&

where g = ¢,/2¢* The quadrature is approximated by
the expansion
g
w 4;2&‘2}
fu0
where the coefficients are a function of A:
a4 =1

1
2+ 1

. € \1/14 € \132
Wiax ™ MA¥ L] — y psan s
& 3a:

where € = 0.5 X 10,

a5 = {—1)

[G+ 1) M —far]

4 ATmn = Wiax 24} wr::x

i=0
w,, the initial approximation, is given by
GBuwe)® w1 >3
w T, 2wy 1< fwe | Z3
w, S w1
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Iteration proceeds by Newton’s method:

IR A .40
w}i—l b w} f' (w})
where
&
flw) =w aywt — w,
and
_ 1+
fl) = Gy

Convergence is usuaily obtained in a maximum of four
iterations for cases which have arisen in practice, assuming
a criterion of | f{w;) | < 5 X 10 [ w, |

When convergence has been obtained the coordinates
may be calculated from the formulas

ewr 2w
R= oo i+ v 70

m{l-i—.\)wcxp_}_ (1 — AW*) o,

My gy TG ren ¢

Hyperbolic Case

1f method 2 is to be used, the subroutine QUADKP is
called and returns with F, the solution to Kepler's equa-
tion. The coordinates are then calculated from the
expressions

Re=g(ecoshFYP+ ay/e® — 1sinh FQ
Ve av’asinhFP_i_d\faVsz — ZcoshFQ
R R

Elliptic Case
Begin by defining the auxiliary quantity M* by
M=M=n(T—T,) (mod2s) ~a< M*E~r
and
by = {sgﬂ (M» >} ~§~
Then for | M* | 5 n/8 — ¢/2, take

E, =M
E,=M— b,
Ey= M b,

and for | M* | > =/6 — +/2 the approximations are
E,w= M— by
Ey= M~ 2hy
Ey= M

B et
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Now if | M* | & 0.25, iteration is performed using
Newton's method with E, as the initial approximation:
f(E;3
Ei.y mm By oo rpiviais
P TEPED

where f (E} = E — ¢sin E — M. Convergence for New-
ton's method is evidently given by

By —E=O(L(E; — E¥®)
where f (B} = 0,

Whenever | M* | < 0.25 Muller’s method?® is used:
By = By + by
Bier = Agr By
" 28, {(E;)
g+ {sgn (g0 VT as]
ay= g5 — 4a;8s f{{Es)
X A f{Epe) 8 f (Byo) + f{E]

81 = A f (Epa) — 83 f (Epr)
+ (A + 8 f(Ep)
§y =1 "+“z\._f

/\141 =

Initiaily, of course,

The convergence rate is given by
EJH — E = O {sff)

where ey = max {|E; —E|,|Ejy — E|,[Efp ~ E|)
and f(E} = 0. The method owes much of its usefulness
to the obtaining of E,,, by interpolation, which makes it
relatively insensitive to f(E) =~ 0.

¥or both the Newton and Muller methods, convergence
is defined by

(B | =€l M|

where ¢ = 5 X 10 or until E;,; and E; agree to 25
bits. In practice, for the values of M and € encountered,
three or four iterations are usuaily sufBcient for conver-
gence,

Whenever 0.5 < ¢ < 1, the following series expansions
are resorted to:

Pavid E. Muller, “A Method for Solving Algebraic Equations
Using an Automatic Computer,” Mathematical Tables and Other
Aids to Computation, 18538, pp. 208-215,

1) FO{’EE}§< 1.98
E; — esinE; = (E; — sinE;) + (1 — ) sin By

) _Ep (31)%et E NG
Ey —sinfy = = (2;+3)s(“"3"3i")
wfi

(2) FPor|H;| <228
) mﬁmz Gy Ey
1= cos By =57 (z£+2}z( 21
L]
cosE; ~ = (1 —¢) =~ (1 cosk;)

Here ¢ is made consistent with the choice of 1 — ¢ as
an independent orbital element.

The coordinates are obtained after convergence by use
of the formulas

R=ga{cosE— )P 441 ~esinEQ
V= ma\z‘1c3fsinEP+a\/ csix/;m ezcosEQ

R

As usually only the position is required for the two-
body orbit in the Encke scheme, KEPLER is additionally
used to calculate R. Whenever V is needed, the subrou-
tine SPEED is called upon, which makes use of the pre-
vious solution E, F, or w. R is placed in the COMMON
cells QX0, QX0 + 1, QX0 + 2 by KEPLER, while
SPEED places V in the cells QX0., QX0. + 1, QX0. + 2
and also calculates the true velocity ¥V + p which is
piaced in the cells QX, QX. + I, QX. + &

After the first use of KEPLER in a phase, further time
points use as inital approximation the solution at the
preceding time point,

5. Perturbations

HARMN, HARMNI]
The oblate potential of the Earth is assumed to contain

the second, third, and fourth spherical harmonics:
ae { Ja? Ha?
Ug = 5= {35 (1 — 3sin?e) + 5o (3 — Ssing) sing

i

£ 3
+3~§§ (3 — 30sin2 $ + 35sin* ¢)

where u, is the gravitational coefficient of the Earth and
a4, is the equatorial radius of the Earth.

R = (X, Y,Z) is the position vector from the Earth's
center of mass expressed in the mean equator and equi-
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nox of 1950.0. To obtain ¢, the geocentric latitude, r =
{(x, y, 2}, the position vector expressed in the true equator
and equinox of date, must be obtained. NUTATE pro-
vides the necessary rotation matrix A:

A3y L 4y X
= dzy daz @2z Y
z A3y 32 d3a Z

Thus sin ¢ = z/R.

To obtain the perturbing acceleration, VU is formed:

70y = (e 2 2L2)

Dy D % ’ B #

where u, = X, 4, = Y, and u, = 2.

el Tug 45 522\ # .
8. L8 B —nz V H Z
Dy FEE %(I + 2 g

wherej = 1,2, 8,

The calling sequence for the setup entry is

CALL, HARMN
PZE X.B
PZE K. 4T
PZE R

X, X + 1, X + 2 contain the vector R = (X, Y, Z); B,
B+ 1, B+ 2 will contain ~ VU@, the negative of the
perturbing acceleration; K contains u g, the Earth's gravity
coefficient; ZT containg z, the distance above the irue
equator of the Earth; and R contains R, the distance o
the center of the Earth.

HARMNI1 is the execution entry which assumes the
above storage layout. In addition, provisions have been
made to omit the calculation of the various harmonics as
a function of the geoccentric range. The internal param-
eters are listed in the following:
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Nominal vahue
1.62345 > 108

Location  Quantity
HARMN + 2 i

Explanation
Coefficient
for second
harmonic
Coefficient
for third
harmonic
Coefficient

for fourth
harmonic

Earth radius

A>H, sup-
press second
harmonic

R > R, sup-
press third
harmonic

R > R-u sup-
press fourth
harmonic

+ 8 H - 0575 X 1
0.7875 X 10~

8378.165 km
500,000 km

+ 5
+ 8 R.

+7 R, 200,000 Jan

+ 10 R, 100,000 km

As HARMN is contained in the symbol table for INPI,
the above parameters may be input in the symbeolic mode
of INPL

The subroutine uses 15 cells of erasable storage starting
at COMMON.

XYZDD, XYZDD1

For purposes of computing the oblate potential, the
Moon is assumed to have a triaxial ellipsoidal fgure. The
moments of inertia A, B, and C are taken about the prin.
cipal axes of the ellipsoid xz, y, and z originated at the
Moon’s center of mass.

Sketch A-16. Geometry of the true equator of the Moon
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In Sketch A-16, the X, ¥*, Z' frame is the Earth's true
equator and equinox; the x — ¢ plane lies in Moon’s true
equator with z completing the right-hand system by lying
along the Moon's spin axis. { is the inclination of the
Moon’s true equator to the Earth's true equator; ¥ is the
right ascension of the ascending node of the Moon's true
equator; A is the anomaly from the node to the x axis;
a is the anomaly from the node to the ascending node of
the Moon’s true equator on the ecliptic; € is the true
obliquity of the ecliptic; 8y is the nutation in longitude;
2 is the mean longitude of the descending node of the
Meon’s mean equator on the ecliptic; ¢ is the mean
longitude of the Moon; I is the inclination of the Moon's
mean equator to the ecliptic; ¢ is the libration in the
node; + is the libration in the mean longitude; and ; is
the libration in the inclination. The anomalies are related
by A — a = ({4 ¢} — {Q + o). Expressions for the
above quantities appear in the discussion of subroutine
MNA.

The two rectangular systems are related through A, o,
and i by the rotation:

X 541 bz by X’
¥ = Z’:l bez bs:s ¥
z b:u bsz 533 z

where

by = cos Acos§Y ~ sin Asin (¥ cosé
b w cos Asin ¥ -+ sin Acos cosé

513 = $in A Sinf:

by = —sinAcos¥ — cos Asia ¥ coss

bae == — sin Asinf¥ + cos A cos Q' cosé

b,y = 08 A siné

by = sin £ sin s
by = — cos{¥ sins
b3y = cosé
Combining the above rotation with the one to rotate

1950.0 coordinates to true of-date, as described in
NUTATE, derives the additional relation

X (3T 3 ¥ iy X
w i My 202 oy Y
z 3 My zy Z

where X, Y, and Z are the 1950.0 coordinates.

The following form of the potential function which
accounts for a second harmonic has been adopted:

G (A + B+ C—~3D)

U =
€=R iR

G = %}« = k%, the universal gravitational constant
4

= al 2N g2 Ry
zmA<R> wMzs(R) +c(R)
To obtain an expression for the perturbing acceleration

{2V 22U aUe)
voe=(Gae S 5o

is formed, where u, = X, u, = Y, and 4, = Z.

aU«wG{W£A+B+C+15_I_£L
\ RF 'R

TTWT TR T

o %; R
------ % [Am ;x4 Bmg; y + szgz}}

where j = 1, 2, 8. In current use, the values of the param-
eters are

G = 0.6671 X 107 ks /kg.sec?

A = 088746 X 109 kg-km?

B = 088764 X 10** kg-km?

C = 0.88801 X 10%* kg-km*

The cailing sequences are
(AC) = fractional days past 0* of epoch
{MQ} = integer days past 0" Japuary 1, 1950, E.T.
CALL XYZDD (or XYZDDI for time change check)
PZg 1.X
PZE X.

X, X + 1, X + 2 contain R in the 1950.0 system; X..,
X. + 1, X.. + 2 will contain the perturbing acceleration,

If the entry XYZDDL1 is used, the matrix {m;;) is re-
computed only after time has changed by d = 0.01 day,
where d is a program parameter. On the other hand, the
entry XYZDID will give recaleulation of {m;) each time.
It "has been determined by numerical experimentation
that d = 0.01 day gives the perturbing acceleration to
sufficient accuracy to represent faithfully the motion of a
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low-altitude satellite in the field of an oblate Meon, as
compared with an evaluation of {m;;) at each integration

step.

If R > R, = 40,000 km, then the contribution from the
oblateness is set to zero. Ho is a program parameter.

The subroutine uses six cells of erasable storage start-
ing at COMMON.

BODY, BODY!

‘Fhe subroutine BODY has been provided to perform
the caleulation of the n-hody perturbation term

R; R
p=-3 w(R* %)
f=1

where Ry, = R — Ry

The subroutine has the execution entry

CALL BODYI
and the setup entry
CALL BODY
PZE X,n
PZE XN, XJ
PZE R}, RJP
PZE  X.

where the locations X, X + 1, X + 2, contain the vector
R, the position of the probe with respect to the central
body. The maximum number of noncentral bodies is
given by n; the gravitational coefficients g; for the non-
central bodies are assumed to be stored in the list XJ, ...,
K} + (n-1) with the convention that a cell containing
zero means that the corresponding body is not used in
the formation of P. The vectors R;, the positions of the n
bodies with respect to the central body, are assumed to
be stored in the bank XN, ..., XN + 8(n — 1) + 2 where
the ordering is the same as for the .

The execution entry results in three types of output:
— P is stored in the cells X, X., 4 1, X.. + 2 the R, for
the effective bodies are stored in locations R}, ..., R] +
(n — 1), while the R,, for the same bodies are placed in
the list RIP,..., RIP + {n ~ 1).
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"The subroutine uses 14 cells of erasable storage start-
ing at COMMON.

é. Variationol Equations

VARY, SVARY

The subroutine VARY has been written to provide for
the calculation of the derivatives of the first-order vari-
ational coefficients, i.e., of the partial derivatives 3R/ 3u;
where {u;} = {X,, Y,, Z,, X,, Yo, Z,} and all quantities
are referred to the mean equator and equinox of 1950.0.
The 2R/2u; may be expressed in the form pR/pu; =
{A + B) aR/2u, where the matrix A arises from the
centrai-body term and the n-body perturbation and B
approximates the effect of the Earth's oblateness to he
used only in the vicinity of the Earth,

The form of A is obtained by differentiating R with

respect to u, and exchanging the order of differentiation
where

R _ X' {Ry . R
R == #* F'ed kz { Ra + Rk}
E
2R : 1 R _ 2R
oo = - 2w 5y~ g (Mg )
with us == p and R,, = R. Expanding the dot products,
the computational form of A results:
- Z _3XY,
R;, R},

Kig ¥
*411—32;#; - kp

E3
k=0 Rk’
. 1 AY:
Ane = _2“" 31{3 . R’ka
k=0 kp kp
N YeZ
A ™ Ay = 32 “%-k—v'-
k=a kp
n z z=
Ass—MZFk%F 3R?%
kze ko

[
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To obtain an approximate expression for the oblateness
contribution B, choose the perturbation which retains just
the second harmonic term:

QR B 82T
where

J g, SZ3\
&= - g‘@(i TR )
] akp, 52¢
&2 - g‘ﬂ'}(a - re )

At this point a further approximation is made in that the
coordinates are regarded as being expressed in the refer-
ence system, the mean equator and equinox of 1950.0.

Forming the partial derivatives

X X(Z 2% _ 3 p. ax)

au, = & B A\X D #y T RE LT
reX Ja @{ 22 ( A ﬁ}
+ B ez r2ll- )RS
QY X,_i_ay_ﬁi..an)
24 BRA\Y Dy R? Dy
e f1y; 22 4 (1 192) . 28}
o {wza”i%q L R 2
2Z _,Z(123Z 3 p aR)
2, SR\Z 2% E " 3w
re? 19107 7 5 (- 192 2B)
o % R li}za }+2 3 - 7 R Y7

where Bﬁ/‘a u; represents the contribution arising from
the oblateness only, The final form of B is obtained by
the expansion of the dot products:

X{t 3X x: Jaf 1022
B““g‘“iz"(? R*)+2“@ B TR (I 2 )
X E34 XY Jag 1022
Be=ag (- %)t e 2 (- F
3Z Xz Jag 1022
("“IT?')H“@ R* Rt (6" R? )

3X Xy Ja 102¢
_*)H“@ R R (1“ R? )

s (= ) + o (- )
(- ) + e (o 48)
ek (- ) R (- )
( ) + 2kg 1;? ];4 (3 - z?f)

AN 37 Z Ja 1027
e (3~ ) + e (o - 195)

The vector {g, X/R, g, Y/R, g, Z/R) is assumed to be
caleulated externally while the parts of B which do net
contain g, or g, are replaced by zero whenever B > 3a

@

The execution entry VARY is preceded by the setup
entry SVARY:

CALL SVARY, A, B C D EVF G HLLK

where R, the position of the probe with respect to the
central body, is contained inthe cells A ~ 3, A — 2, A ~ 1.
The block B ~ 3n, ..., B — 1 contains the noncentral
body position vectors R,, ..., Ry R is contained in loca-
tion C while the block D~n, ..., D~ 1 contains
the quantities R,p ..., Rap.  is in location E and the cells

F—n, leare occupied by gy, ..., pe 4 zEro
in one of the latter cells is used as a flag to skip the
corresponding body in the caleulation of A. The oblate-
ness perturbation is assumed to be stored in the locations
G~ 3, G — 2, G — 1; an internal test is made to deter-
mine whether the Earth is the central body, since B is set
to zero whenever the calculation is not centered at the
Earth. To determine the maximum number of perturbing
bodies, the decrement of the cell H contains n, The
oblateness parameters dg and J occupy the locations 1
and J respectively.

As output from the execution entry, the matrix A + B
is deposited in the storage locations X — 9, ..., K — 1.
Execution of the subroutine requires 30 cells of erasable
storage starting at COMMON.

ai
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7. Numerical Integration

MARK

MARK is the subroutine which obtains the numerical
stepwise solution of a set of linear first-order differential
equations by employing an Adams-Moulton predictor-
corrector of virtually arbitrary order which utilizes back-
wards differences; & Runge-Kutta scheme is used to form
the necessary differences of the derivatives to start the
integration for the multistep method, The step size is
haived or doubled upon external reguest by subtabula-
tion of the derivatives in the former case and by elimi-
nation of intermediate points in the latter; hence it is not
necessary to restart with Runge-Kutta to effect a step-size
change. MARK has been designed to carry out the aux-
iliary functions of obtaining the numerical solution at
specified values of the double-precision independent
variable; ie., for desired times, or deoing the same job
whenever a specified dependent variable attains a null
value. To permit the main program to determine the
desired times and to define the dependent variables, a
list of control words called triggers is appended to the
calling sequence; the structure of the triggers is described
in the explanation of the calling sequence to follow.

To allow the main program to monitor the numerical
solution, EOS, a supervisory routine provided by the
main program, is cailed at the end of each step by MARK,
Additionally, MARK must be given access to a subrou-
tine for the evaluation of the derivatives and the calcula-
tion of all necessary dependent variables so that isolated
zeros may be iterated down upon and captured.

If m is the highest-order difference retained for the
Adams-Moulton method, then for starting purposes the
Runge-Kutta portion of MARK must integrate ahead m
steps of A, at which time the necessary backwards differ-
ence tabies for the derivatives will have been completed.
Assuming one variable for simplicity, the Runge-Kutta
formulas are

)’nu = yﬂ

+ %»(éi 4 2k, + 2%, + &)

‘él = bf (“myn}
éawa(tn"}' %;?n“}" ”’%‘kz)

_ b 1
by = bf(:,. gt 3»&,)
o= bf (b b+ &y)

az

where the differential equation to be solved has the form
g = f(t,y). The ordinate y, is accumulated double pre-
cision, while the k; are evaluated and summed in single
precision to be added to y, in double-precision form. The
solution at intermediate times is obtained by altering h
to step forward to the desired time and resuming the
integration with the old step size h upon return from the
trigger execution; while homing in on a zero of a depend-
ent variable, the step size may even become negative.
The collecting of the derivatives for the difference tables
is accomplished by the setting up of internal time stops
at the necessary mesh points; thus the Runge-Kutta sec-
tion will obtain the solution at the necessary times for the
tables while carrying on the ordinary functions of MARK.

The Runge-Kutta formulas give results which agree
through fourth order in h with a Taylor series expansion
as may be seen from the foliowing development:

b= b

A )t;i,a 3 H

1 for s==4
‘\f‘}m )
g |27 for i=2,3

Expanding the operator and using the notation
af/fot oy =1, . there Tesults

=it Lot iy + B2 Garapts Fro)

+ %['%’G;s F 3 foy 3P fup fsf,,)] + O (5%

b=hf+ Zoho )

L2 0ttt 10+ 2 to + 2wt 11|

)}
5
H 25 (ot ) (o )

+ 2, (fo + 2 fu+ )

+ kot ffo + 3 fom + o |
+ O ()

P

o
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k= hf + EZ (fe + )]

+ "'5"','" {3]‘! (ft + ffy) + 3 {f=° + fow + fzfv*}j

+EL L+ 1) + 12 G ) (o + S

+ 3fy (fot 2 foy 4 P )
+4(fat 3fey+ 3P fust fFha)]
+ Qb

»é- (b + 2k, + 205 + k)

= b+ B (fe )

"‘[“ "g";" {f# (f# “'f"ffy) + (f;=+ fow +fxfﬂ"}3

* % [fe (Fo 4 fh) + 3 e+ ) (foo + fd

+ fy (fort 2f frg + f2 fra)
+ (fod 3 fopt 3 foat P lad]
+ O (5

But g4, is given explicitly by the series

: i
Farr = ¥n + E ”%” 9'(“ + O (H)

dul
where
- d’y) W(a a)f“‘
wme(Gh), = (&1 %)
In particular,
y{l} ;f
y* = fo + ffy

¥y =f (fo -t )+ ot 2ffu+ £l
g = 2+ M) 3 (Ge v 1) (Bt )
“}"fv(ft*”f*szw*'f*fw)
+ (fu+ 3 oy + 3 frn + £ o)

Thus the two series expansions agree through terms of
he,

"F'o show that the truncation error is, in general, at least
O(h*}, consider as an example the simple differential
equation

Y=y
with solution
_ b BB
:im_y,.[l+b+ + 31 + gt
In comparison, the Runge-Kutta formulas vield

kg = by‘

]+O{b‘)

@m&%(1+§)
b A
;éa I b}'" ( wzw T)

_ ®  h
wbyu(1+b+ =+ 4>

1 B L A

Thus the two series disagree beginning with terms of A%

The formulas used for the Adams-Moulton integration
are derived from the expression
(1 —-V)p—1.,
—Ra-vy "
If a series expansion is obtained and differences through

order m are retained, then the truncation error is evi.
dently O(h™*) since

b T gz b (B D™ g, 4 O (5™P) )

j’u»;a = yn “‘f" .6

The predictor formula results from p = — 1
_ (- —1.
ysﬂ“‘yn"}“b —In (i = v‘} ¥u

The computational form is obtained by expanding into a
series and retaining differences up through mth order.

Frr1 ™ ¥n + b(z aj V}) )}n

T

where the first few coefficients are

o =
glm....}:.
)
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8
4= 2L
720
o=
288
gy = L0087
60480

As the predictor is relatively unstable for m 2= 5, an
option has heen provided in MARK for the use of a cor-
rector formula which may be obtained by setting 2 = 1
in the general expression

h<7

Y 5= Yyt Tha-o
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For purposes of computation this becomes

Yi 7 Yoo + B (E by V’) ¥n
Fuo

where the low-order coefficients are

by =

1
b]_&“'z_
.
by = 12
oo
by = 24
19
b= = 555
- 3
by 140
b = - 863
¢ 60480

‘The predictor and corrector each require separate eval-
nations of the derivatives; after application of the cor-
rector and the calculation of the derivatives at the new
time station £,, the solution may be obtained at intermedi-
ate points ¢ by choice of u = {t, — £)/h, where t, — h <

t < ta:
Pt ™ Yo b(E £y v’) Tn

F=0

where the ¢; are obtained by the convolution of the series

. e
(1— V-1 _ el &
T A

f=0
with the series for the corrector
=]
2 by V!

i

The interpolated solution may then be used either for an
intermediate time stop or to help fnd the zero of a de-
pendent variable.

At the return from the execution of a trigger, MARK
may be signaled to change step size by powers of 2 over
the nominal value; any other type of step-size change
must be effected by restarting the numerical solution.

84

Each time a double is called for, MARK sets internal time
stops to save the necessary information for doubling dur-
ing the next m steps as measured from the end of the
current step; of course, the necessary past information is
regenerated at this time and saved to be adjoined to the
future information to form a difference table of deriva-
tives with twice the step size. At the completion of first
doubling, further doubles may be executed in sequence
as called for by the main program.

Halving is accomplished by the subtabulation of the
derivatives according to Newton's fermula:

S L (] ; -1y # iya
J"n»-y- (1 V}#yu’*‘(JZG( 1) (?.)V)yn
foru == 1/2,1,..., m/2,

At this point new differences of the derivatives corre-
sponding to half the step size may be generated, and
further halving may be accomplished if calied for by the
main program.

Step-size changes by doubling or halving are éxecuted
only at the end of an Adams-Moulton step and after all
time stops and dependent variable stops occurring at
times inside the current interval have heen executed.
While integration is being carried out by the Runge-
Kutta section, the doubling and halving signals are
ignored; both signals given simultaneously will result in
internal confusion.

MARK has the calling sequence

CALL MARK
PZE  HBANK,T,EOS
PZE  DERI,DER2
(ERROR RETURN)
(FIRST TRIGGER)

{LAST TRICGER)

HTR End of calling sequence

Most of the information to be shared by the main pro-
gram and MARK is organized in the following buffer:
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HBANK -3 PIE m Adams-Moulton

order
-2 PIE NH Number of
initial halves
—~31 PZE NP Number of
initial doubles
+0 DEC A Initial Runge-

Kutta step

Total and effec-
tive variables

+1 PZE N.n

+2 DEC T, Double pre-
cision
+3 DEC T, Time
BSS =n y, solution of
differential
equations
BSS N-—n Expansion for
more equations
BSS n y, derivatives
BSS N-—n Expansion for

more equations

BSS  {2m -+ 5)N Working area

for MARK

T 5% O Bags time as double precision; otherwise, com-
putation wouid be with single-precision interpretation,
At the end of step, MARK calls the routine EOS; return is
via TRA 1,4. For the calculation of the derivatives,
MARK ealls 2 routine which may be divided into two
parts: DER! for time-dependent derivatives and DER2
for the other derivatives, If time has just changed, MARK
calls the first entry, while the second entry is called if
time remains the same as a previous evaluation. The
return device is provided by TRA 1, 4.

A generation of a time which is smaller than the cuyrent
time will cause MARK to give the error return; if the
number of active dependent variables exceeds 20, the
error return is likewise given, Normally, the main routine
controls the integration by means of the subroutine EOS
and by the triggers, but MARK does most of the detail
work.

While in the Adams-Moulton mode, the main routine
must determine how many times the corrector formula is
to be applied; the symbelic location NI in MARK must
have in its address the desired number of applications of
the corrector.

Each trigger has the structure
OF AB
PZE C

The trigger is active whenever the sign bit of the first
word is plus; otherwise, a minus sign will cause MARK
to ignore the trigger. At location A is a subroutine in
the main program which MARK calls whenever the con-
dition defined by the trigger has been met. This subrou-
tine returns via TRA 1, 4; if the trigger is not disabled
by the subroutine at execution time, then the value of
the variable must in general be changed, lest MARK
attempt to execute the trigger again upon return of con-
trol, The tag of the first word of the trigger is used as a
flag by MARK in the case of a dependent variable so that
many triggers may be worked on in a single interval.

The variable defined by & trigger may be of two types—
independent {time-stop) or dependent. The former case
is Hagged by B = 0 and C is then the location of the
desired double-precision time for execution of the trigger.
In the latter case, the dependent variable is defined to be
the difference between the contents of B {B+£0) and
the contents of C. In practice, the quantity in C is the
desired value of the variable which is computed in the
derivative or the end-of-step routine and stored in the
location B.

At the end of each step MARK scans the list of triggers
and determines the smallest time which will result in a
time stop; all the active dependent variable triggers are
inspected to determine those variables which have ex-
hibited a sign change over the preceding step. A linear
approximation is made to the root of each variable and
the variable which apparently has a root at the earliest
time in the interval is iterated upon; a new set of lnear
estimates of the roots for all the pertinent variables is
formed at each step of the iterative soluton. At conver-
gence, the time stops and the dependent variable stops
are executed in proper time sequence.

For purposes of convergence, two times are considered
the same whenever agreement is obtained out to approxi-
mately the last two bits; the same test is applied to the
sequence of times formed by the iteration process in
finding the zero of a dependent variable. Each new time
generated requires the calculation of the derivatives ap-
propriate to the new time solution. After all the triggers
in an interval have been cleaned up, the information
at the end of step is restored and the derivatives are
recalcuiated.
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