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ABSTRACT

The Space Trajectories Program for the IBM 7080 computer is
described in comprehensive detail, with emphasis on the development
of the equations. Equations of motion for both the Cowell and Encke
methods are given. Numerical experience with the class of trajectories
encountered in practice is included to compare the Cowell and Encke
methods, and to obtain an estimate of the over-all accuracy of the
program. Sources of error are pointed out, consistent with the precision
of the numerical methods. Operating instructions and descriptions of
input and output are provided for the successful running of trajectories.
Flow charts presented serve as a guide to the understanding of the
internal sequence of events and control methods. Major subroutines
used in the program are contained in the Appendix. The program is
written in the FORTRAN Assembly Program language.

. INTRODUCTION

IPL TECHNICAL REPORT NOQ, 32.223

The Space Trajectories Program originated in the need
to study trajectories of high precision formed by the
transit of a space probe from the Earth to one of the three
targets technologically feasible at present - the Moon,
Venus, or Mars —under the influence of gravitational
forces described by Newton’s law alone, Although the
major programuming effort has gone into obtaining a
solution for which the accuracy is consistent with the
single-precision arithmetic used, and which requires 2
reasonable amount of computer time ( about 30 seconds),
the program may be used for study of general inter-
planetary flight where it is sufficient to include the bodies
Sun, Venus, Earth, Moon, Mars, and Jupiter for their
gravitational influence.

Since the program solves the equations of motion for
the probe only, and ignores the negligible perturbations
of the probe on the bodies, it is sufficient to obtain the

positions and velocities of the bodies in the form of
planetary and lunar ephemerides in some convenient ref-
erence frame, Since the coordinates have been tradition-
ally referred to the Cartesian system based on the mean
equator and equinox of 19500, the ephemerides used by
the program have been uniformly expressed in the same
coordinate system. The collection of ephemerides was
systematically done on magnetic tape?

Having expressed the coordinates of the bodies in the
1950.0 reference, it was natural to write the equations of
motion in the same coordinate system. But it was immedi-
ately necessary to obtain expressions for the precession

'A description of the standard source tape with origins is given in
“Subtabulated Lunay and Planetary Ephemerides,” by R. H. Hud-
son, Technical Release No. 34-238, Jet Propulsion Laboratory,
Pasadena, Calif.,, November 2, 1860,
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and nutation of the Earth’s equator so that the oblateness
perturbation of the Karth might be properly assessed in
the 1950.0 frame and that injection conditions referenced
to the Earth’s true equator of date resulting from pow-
ered-flight arcs might be rotated to the fixed system. To
assist in the latter transformation, the hour angle at
Greenwich of the true vernal equinox was obtained by
the synthesis of a calculated mean value and the nutation
in right ascension formed from the nutations and the
obliquity of the ecliptic.

As the planetary-position ephemerides are tabulated at
four-day intervals and the lunar at one-day intervals on
the ephemerls tape, it was necessary t¢ use an interpola-
tion scheme to obtain intermediate values of positions
and velocities, An Everett’s formula which utilizes second
and fourth central differences was chosen for the posi-
Hons; to obtain the velocities, the Everett’s interpolating
polynomials were differentiated to obtain polynomials to
be applied to the tabulated positions, It was found con-
venient to tabulate the necessary differences on the
ephemeris tape along with the positions, and to arrange
the tape in 20-day records to permit eficient tape scan-
ning in either the forward or the backward direction, and
to avoid excessive tape reference; thus lunar trajectories
require, at most, two records, and interplanetary on the
order of ten, which keeps tape-handling time within
reasonable Hmits. Additienally, for the Mocn, the sixth
and eighth central differences have been thrown back on
the second and fourth, since the former are not negligible.
To handle long flight times, the argument is carried in
double precision; this technique also allows for smooth
interpolation.

The equations of motion have been written to take
advantage of the fact that usually a central body may be
found, and the cocrdinates relative to that body expressed
so that the dominant term in the acceleration arises from
the chosen body, and the remaining terms are relatively
small perturbations acting to displace the two-body orbit
formed by the trajectory of the probe in the field of the
central body alone, Thus the remaining gravitational
bodies give rise to what is known as the n-body perturba-
tion; the perturbation arising from the oblateness of the
Earth and expressed by the second, third, and fourth
harmonics is included when the probe is near the Earth;
in a similar manner, the perturbation derived from the
triaxial figure of the Moon and represented through a
second harmonic term is included when the probe is in
the vicinity of the Moon. The above method of represent-
ing the equations of motion is known as a Cowell scheme.
If the central-body term is replaced by the acceleration

arising from the deviation of a true orbit from a fixed
reference two-hody orbit and the equations of motion
are referred to the deviation, then the method is called
an Encke scheme. Either the Cowell or the Encke scheme
may be used in the program, although the latter is gen-
erally preferred in practice because of a small advantage
in speed and accuracy. But for the powered flight option,
which simulates the burning of a constant-thrust motor, a
Cowell scheme is generally advisable because the rapid
deviation from the reference two-body orbit would force
frequent recalculation of the reference i the Encke
scheme were used. The motor is assumed to be of high
thrust since the attitude is forced to remain fixed in space,
a restriction which is unrealistic for a low-thrust motor.

The solution to the trajectory problem is obtained by a
stepwise numerical integration of the equations of motion
appropriate to either the Cowell or Encke scheme accord-
ing to an Adams-Moulton predictor-corrector method
which retains the sixth differences of the derivatives; a
Runge-Kutta method accurate through fourth order is
used to obtain starting values for the Adams-Moulton
method. An additional refinement is the fact that the
ordinates are accumulated in double precision to control
the growth of roundoff emmor. To obtain the solution at
desired points, the subroutine MARK is employed. {For
details of subroutines, see Appendix.)

For purposes of control, the trajectory has been divided
into segments which are referred to as “phases.” Usually
a phase is characterized by a dominant central body, and
integration step size is determined by the distance of the
probe from that body. Thus a normal Venus trajectory
which injects near perigee and terminates with Venus
impact would consist of three phases: phase one, integra-
tion to 25 X 10° km from the Earth, with the Earth as
the central body; phase two, Sun-centered integration to
28 X 10° km from Venus; and phase three, Venus-
centered integration to the surface of Venus at 8100 km,
In addition, the phase may be used for the auxiliary
function of controlling the density, type, and incidence
of output.

The program operates internally in Jaboratory units,
i.e., in kilometers and seconds, rather than the classical
units utilized in celestial mechanics. Universal Time (U.T.)
is used, aithough provisions have been made to augment
U.T. by a constant to obtain Ephemeris Time (E.T.) for
use as the argument of the ephemerides. For purposes of
high resolution, time is carried in double-precision sec-
onds past 0* January 1, 1850. This choice also makes for
consistent results, even though the phase-transfer points
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may be changed somewhat for a particular trajectory;
otherwise, the interpolated values of the cocrdinates
might not be a smooth function of time, and hence give
rise to systematic errors at the transfer point.

The motion of the Moon’s true equator has been accu-
rately represented by the program to provide for seleno-
graphic coordinates to be used for both input and output.
The rotation necessary to transform from the 1950.0
reference to selenographic Cartesian coordinates is also
needed to represent the perturbation arising from the
nonspherical figure of the Moon. The description of the
selenographic guantities may be found in the discussions
of subroutines NUTATE, MNA, MNAMD, and XYZDD?
given in the Appendix.

In summary, the Space Trajectories Program in is
present form is the culmination of three vears of work in
the space trajectory field at the Jet Propuision Laboratory,
and is designed for the study of the motion of a space
probe confined to the solar system and influenced by the
nonspherical Earth and Moon, and the point masses
defined by the Sun, Venus, Mars, and Jupiter. The pro-
gram may also be emploved in other applications, of
which the following are some examples. A simplified
powered-fight arc may be simulated which assumes a
constant-thrust, constant-burning-rate motor with thrust
direction fixed in space. Any of the above-mentioned
bodies may serve as the reference body at the injection

"These subroutines were programmed with minor revisions from the
equations described in “Selenographic Coordinates,” by B. E.
Kalensher, Technical Report No. 3341, Tet Propulsion Laboratory,
Pasadena, Calif,, February 24, 1961,

epech, and stepwise numerical integration of the equa-
tions of motion appropriate te either a Cowell or an
Fincke scheme serves to step the probe along its flight
path to one of the bodies, which then serves as a target,
Standard-type trajectories injecting near the Farth, and
having as target one of the bodies Earth, Moon, Venas, or
Mars, have been given special treatment to reduce the
volume of input necessary for execution. The injection
conditions may be input in Cartesian or spherical coordi-
nates based on one of four reference frames: mean equator
and equinox of 19330, mean equinox and ecliptic of
19500, true equator and equinox of date, and the true
equinox and ecliptic of date. For the Earth as injection
body, the Earth-fixed spherical set, based on a rotating
Earth, is available; for the Moon as injection body, the
selenographic (Moon-fixed spherical} coordinate set,
which takes into account the rotation of the Moen, may
be used. For injection conditions taken with reference to
the Earth, a quasi-orbital element set for escape hyper-
bolas, known as the energy-asymptote option, has been
made available. For output, anv of the ahove quantities
may be obtained at will, along with ephemeris informa-
tion expressed in any one of the four Cartesian or spheri-
cal coordinate systems; conic output may be called for
which expresses the osculating two-body orbit in many
sets of orbital elements referred to one of the standard
Cartesian frames; all manner of the principal angles be-
tween the probe and the bodies may be displaved; up to
a maximum of 15 tracking stations may be used to ohserve
the probe in topocentric spherical coordinates; or view
periods of the stations may be determined by the pro-
gram and displayed in the form of rise, maximum eleva-
tion, and set prints.
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. EQUATIONS OF MOTION

A. Cowell Scheme
Let there be a small probe, body 0, in the gravitational
field of n other bodies. Choosing an inertial frame of ref.
erence results, according to Newton, in
Em Li =08 (D)
Pl
i

wherep;,- R Phen = i P [; i,i=0,...,n;and k is
the gaussian gravitational constant { Sketch 1},

Sketeh 1. Relationship of ith and jth body
in an inertial frame centered at ©

Chserve that

n

1
"“Hz
i=9

;P

the center of mass, has the interesting property that

[:‘ w2 1‘1 2
Ry 7 m;
M G Pa}

since
Pis = = Pp
and
n
I H R T Wlth M= Em;
im0

Therefore P is constant and the barycenter is an inertial
frame.

Were it sufficient to express the motion of the probe,
body 0, in an inertial coordinate system, the result would
be

s e B2 L 2
Po .....S..; ey (2}

where the coordinates are referred to the barycenter.
Such a representation would naturally enough be called
the barycentric form of the equations of motion. How-

aver, in practice it is convenient to rewrite Eq. (2) so
that the coordinate system is referred to one of the n
hodies, usually the dominant one.

Using Fq. {2) above with I 22 1 as the central body

R, + Pr = — &2 Z”’f g;e
io

with
Ri= p; — p1 = pu
Riy=R,~Ri=py~p;=py, £i=0,...,5
Rij= | Ris]

defined in the new coordinate system,

To obtain i‘.le from the above expression, calculate p,
with the aid of Eq. {1}:

In practice, since m,/my; = 0, write in brief

R Y R, . R,
R= BURT T zm(R;#”f‘??‘) (3)

F=1
it

with R = R, = R,, R;; = R;,, p denoting the probe, and
= k‘m;;f = 1,,..,12.

In Eq. (3), the summation on the right will be known
as the n-body perturbation which may be resolved into
the direct terms, — = u; R;/ R3 15> and the indirect terms,
= % u; R;/ R}; the latter sum represents the accelerating
effect of the n — 1 noncentral bodies on the central body
and is what distinguishes Eq. (3) from Eq. (2), The
effect of the central body has been deliberately isolated
because normally it is the dominant term in the expres-
sion for the acceleration. In particular, in the case that ali
perturbations vanish, Eq. {3) may be solved completely
for the geometric orbit, a conic. Even when the perturba.
tions are small, the above conic solution may be used to
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rewrite the equations of motion as in Encke’s method
described in Section 1IB.

When the probe is in the vicinity of an oblate body, a
perturbing term is added to the differential equations
which may be described by the corresponding potential
function.

For the Farth, use is made of the second, third, and
fourth harmonics:

Jaf ) Hal ; .
U@ mfR@{—é}%«{l—Ssmﬁcﬁ} +?‘;€%{3m5:‘.m”¢>} s ¢

n Daé ., -
ISR* {3 30sin®*¢ + 35sin ¢}}
where p, is the gravitational coefficient of the Earth,
ag is the equatorial radius of the Earth, and ¢ is the
geocentric latitude, The perturbing acceleration is then
given by

_{2Ug 2Ug 2 Ue})

VUg = 5% B3y 37
where R = (X, ¥, Z) and the coordinate system is ori-
ented in the fixed 1950.0 system described in Section IVB.
The precise form of ¥V Uy is given in the subroutine
HARMN described in the Appendix.

The Moon may be regarded as a triaxial ellipsoid with
the explicit expansion for the oblate potential being

- A4+ BAC— 31
UG“G(WZR:! )

where

Gxﬁ&.xéz
'S

=a(3) 12 () (3]

A, B, and € are moments of inertia about the three prin-
cipal axes of the ellipsoid and R = (x, y, z) is the position
of the probe expressed in the orthogonal right-handed
coordinate system defined by the aforementioned prin-
cipal axes. Specifically, the x -y plane defines the Moon’s
true equator, the x axis emanates from the longest axis
which is constrained to peint in the general direction of the
Earth, while the z axis les in the direction of the Moon's
spin vector; the figure may be likened to a distorted oblate
spheroid, disfigured because of the Earth's proximity.

To obtain the acceleration, again form V U, with
X, Y, Z given in the 1950.0 system. The explicit form of

¥V U, may be found in subroutine XYZDD described in
the Appendix; the body-fixed coordinate system for the
Moon is given in the discussions of subroutines XYZDD,
MNA, and MNAMD in the Appendix.

At times it may be necessary to simulate the perform-
ance of a small midcourse motor which burms with con-
stant thrust with an attitude fixed in the 1950.0 reference
system, Thrust duration is handled as a function of time
alone:

F
Wiy ™ m (T —17Ts)
where C is the spin-axis vector of the probe fixed in space,

F is the constant thrust, m is the constant mass flow rate,
and m, is the initial mass,

8= — C T, 2TET, (4

During burning, Eq. (4) represents the largest contri-
bution to the acceleration and Encke’s method is not
used. In general

= el (3}

where u = w and P represents the contributions to the
acceleration arising from the above-mentioned perturba-
Hons and any thrust which may be considered, The direct
numerical integration of Eq. (3) is here defined as a
Cowell integration, although the latter term is used dif-
ferently by other authors.

B. Encke's Method

Let the probe be near a central body so that P becomes
small compared to the central bedy term in Eq. {3). At
the epoch T, the two-body problem may be solved with
suitable initial conditions. The defining equations of
motion for the unperturbed orbit are

i‘om‘“ﬂ*ﬁ? (6}

Thus, R, is available and, if necessary, R, = V, as a func-
tion of time. Next, consider the differential equations for
p =R — R,, the Encke dispiacement, where R is from
the perturbed orbit defined in Eq. (5):

o R R,
pwmp(-g;w“ﬁ%* + P {73
At this point, the difference between the central-body
terms must be expanded by means of the small parameter
Q; otherwise, numerical differencing will result in sig-
pificant errors introduced in the accelerations. So

5

_
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Define, as with Encke, Q by the relation 1 4+ 20 =
R*/R%; in general, when the method is applicable, Q
will be a small parameter. Now

R:i
1= =1=(1+20)™

angd the difference may be expanded into the series

F@Q =1-(1+20)* =0 40 (9

=0

where m is chosen so that the remainder in the sum stays
smaller than ¢, X 10 whenever [Q ]| = Q..

An accurate numerical value for 0 must be obtained in
order to justify the expense of the series expansion in

Eq. {8}
o=3 (& 1)

_ 1 (Rt p)(Ro+ p) ~R?
T2 R:
1 Ry +2p-Ro+ p-p— &Y
7 RE
p'(Ro"E‘%)
Q = ey (10)

It has been found that the above dot product is well
defined numerically for most cases; further numerical
safeguards which have been added to control the accu-
racy of ¢ are given in subroutine ENCKE, described in
the Appendix.

I the difference appearing in Eq. (7) is evaluated,
using Eq. {8} and Eq. {9), the final equations of motion
for the Encke method become

p=—2(Pp~RF(Q)) +P an
2

To start the integration at the epoch T, an arbitrary
set of elements is chosen to describe the two-body motion;
in all instances, judicious selection must be made so that
the Encke term in Eq. (11) does not become large
rapidly and so destroy the advantage over the Cowell
method, which uses Eq. (5). In most cases the elements
will be osculating, so that p (To) ~ 0 and $ (Ts) =~ 0 to

&

the limitations of the numerical calculation. For the
Encke initial conditions at the epoch T, use

p(T) = R(T,) — R, (To)
p(To) = R (To) — Ro (To)

If the perturbation P is large enough, both Q and »/R,
will grow with time; ©Q may be small while p/R, is rel-
atively large, since Q is defined by the dot product in
Eq. (10}). Under these circumstances it becomes necessary
to rectify the reference orbit and restart the numerical
integration. p/R, is used to assess the numerical accu-
racy of Eq. (10), and an empirical bound has been
appiied as indicated in the discussion of the control
section of the program {see Section V).

The use of the Encke method is advantageous because
the perturbation P enters the derivatives in Eq. (11} to
more significant digits than in the corresponding ones in
Eq. {3), and hence the effect of P is more accurately
represented; step size may be increased by about a factor
of two over Cowell if a dominant central body Is chosen;
and the differential equations are such that numerical
stability of the Adams-Moulton predictor is not quite the
problem that it is when Cowell derivatives are used, even
though both methods use one application of Adams.
Moulton corrector to insure ultimate stability. A com-
parison of the numerical results appears in Section TIL

C. Solutions to the Two-Body Problem

As mentioned in the preceding section, for Encke’s
method it is necessary to obtain a solution to the two-
body problem as a function of time. At epoch T, in
general, a set of osculating elements is required, defined
by R, ¥, and the equations of motion

R = - £ (12)

Ohbserve that R X V is a constant vector since

d(RXV)_ d(RXR)

7 7 =RXR+RXR

~—-M% (RXR) =0

e, = |R X Vi, the angular momentum, is defined as a
constant of the motion, In the exposition below, ¢; 5¢ 0 is
assumed; if the osculating elements give ¢, = 0, then a
nonosculating set is used for the Encke program so that
¢, is clearly defined. Next

RXV

€y

W =
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is defined so the motion is constrained to the plane de-
fined by W. The quantity ¢; = V? — 2x/R is another
constant of the motion

d&%w }AR
L= g (R 3p) =2 iR 47
R . RR
xz{m" R+“R3}
. {_wsR o sR-R
PP S 1
=0

Thus, ¢; = V* ~ 2,/R is defined as the “energy” constant,

1t is possible now to solve the problem of the motion
in the orbital plane defined by W,

X

Sketch 2. Two-body orbit

Referring to Sketch 2, let the closest approach distance
be g at the epoch T, and P defined as Rux = ¢P; define
Q == W X P so that a Cartesian coordinate system de-
fined by P and Q may be set up in the orbital plane. If
R = constant, then T, = T,. Polar coordinates may be
used to write r = {x,y) = re'’, where v is the true
anomaly, Note that since

T el i wp et b ppelinEn

calculate ¢, = r* v, since the component re'* of the veloc-
ity lies along r and, hence, does not contribute to the
cross product which defines c,. Finally, by differentiating
r and comparing with Eq. (12),

o m,ﬁi N T
T (f '3)8 '23
or
2
r+% % 0

Making the classical change of variables, 1/4 = #, and
solving for the geometric orbit with the true anomaly o,

d*u Iy
W"&(ﬂ“?) = {3

where p = ¢2/p.

Measuring the initial conditions at epoch 7', where
v = {}, the solution has the form

1 €
B e e (08 Y

b

since du/do = 0 at v = 0. In terms of 7, the fundamental
geometric solution becomes

P — (13)

i+ ecosvy

while g (1 4+ &) = p; e = Osince p 22 q.

An expression for ¢ is now obtained:

et . &0y ST
=

€3 55 P -%;if- w »;;(5 sin*v + gfcost v~ 1)
(14)
1= BE
¥
e =441+ m}-'?‘
The solution may then be expressed as
- pCOST Psiny
R I+ gcosv Z+ecosyQ
. (133
- + cos v}
Y = cisuwp + o {s
? i Q
At the osculation epoch T, from Egq. (13)
COf Vg = Z’- (%— - 1)
[
and by manipulation of Eq. {15)
suwow}- e R,-V,
[ |
Inverting Eq. (15} gives the vector expressions
P :ﬁcosvo—!i?» - i} Vg W XK,
R K (16)
X
Q = sinvy, »%E- -+ 208§ ¥y R{,Rﬁ
7
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Equation (18} is satisfactory only for e 9% 0; if ¢ = 0,
it is customary to take

Q=WXp
To solve the dynamics, one approach is to work with ¢,
the true anomaly, in the form w = tan v/2.

= gt
1+ Awt

where A = (1 —£)/(1 4 ¢}, in terms of the new variable w.

R

From the relation ¢, = R* 0,

£y o 1+w2
57 4TS T a4
or
1+ &
S{T‘"‘“Tp)w[ Wdﬂ {17)
o

where g = ¢,/2¢%

In practice, the quadrature on the right side of Eq. {17)
is obtained for small values of A by expanding the inte-
grand as a power series in A and «* and integrating term
by term. The resultant form appears in the discussion of
subroutine PERI (see Appendix). Equation {15} may
be rewritten in terms of w as

1w Zw

R=grrmiP s @ .
vm_ci(1+l}wp+ct(1“)‘wz)q {
T ¢ (1+w) g (T + w?)

To complete the solution, it is necessary to obtain T, If
W = sin o/ {1 + cos o) and A are not too large, then aw?
will be sufficiently small so that T, may be calculated
from Eq. {17} with the series expansion. It may turn out
that ! is not suitable, in which case T, is computed
using the eccentric anomaly which is described below.
But once T, is obtained, Eq. {17) may be solved at epoch
T by iteration to give w, used to obtain the coordinates as
in Eq. {18)}. Since aw* must be a small parameter for the
method to work, the principal application comes when
either A is quite small or the motion is confined to a
region near closest approach; the latter alternative gives
rise to the name “pericenter” method applied to the above
process involving w or v

Another way to obtain the dynamics is through the
introduction of the eccentric anomaly. A singularity

appears at ¢, = 0 which is adequately handled by the
pericenter method, as ¢, = 0 implies A = 0. Otherwise,
the elliptical case is distinguished with ¢; < 0 and its
eccentric anomaly F, while for ¢; > 0 and the eccentric
anomaly F, the hyperbolic case is considered.

If 03 < 0, E is defined by
R=g{l—ecosE),0Z|EI=180°
= — £
g ™ o (19}

E>0sothat EZ0HTET,

By substitution into the equation ¢; = V* — 2u/R,

(Imscosﬁ}é“—”.‘f%mﬂ

E—ssinE=n{(T~T,) {20

or

which is Kepler’s equation for an ellipse.

Observing that

- - = ¢
R=a(l—ecosE) = porb—
and
émaesinEl}migisinv
jeads to
v = casE — ¢
cos I ecosE 21)
' e eLoin E
S0 P T
1~ gcos £

Substitution of Eq. (21) into Eq. (15) yields

R a(cosE ) P+ a1~ *sinEQ)
— ; - 22)
V= 4ns=nEP+anv‘1 e’cosEQ (

T~ ecosE I1—ecosE
E, is determined at epoch T by
£ 8
sin By = 4 B Yo
y 5 e .
£ ay e

so that T, may be determined using these equations along
with Eq. (20).

To obtain the coordinates at epoch T for the elliptical
orbits, Eq. {20) is solved by iteration given in the dis-
cussion of subroutine KEPLER (see Appendix).

T
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The hyperbolic case defined by ¢, > 0 admits a similar
solution. Start with the definition for F

R=4(ecosh¥ — 1)

o B
4= (23)

F>0s0that FZOUTRT,

To obtain the form of Kepler's equation for the hyper-
bola, use ¢ as with the elliptical case, and obtain

(ecoshF — 1) F = ./}&mﬂ

and Kepler's equation

esiphF ~ F =g (T - T,) (24)

Comparing expressions for R and fi, v and F are re-
lated by

cosy = e —cosh F

ecosh ¥ — § >
. \er e lsinh P (23)
SIRY 5 i

ecosh F w1

Replacing the quantities in Eq. (15) by those in Eq.
{25), the expressions for the coordinates become

R=a{e~coshF} P+ ay e~ 1sinhF @

_ZensishFo  any T TasF o (26)
T ecoshF ~ 1 ecoshF — 1

At the epoch 7', T, may be determined from Eq. {24},
when F, is obtained from

coshFom}- 1»5-5-?-
£ &

sin Fy = L Ro Vo
LI RV/ N

The iterative solution of Kepler's equation at epoch T is
used to obtain the coordinates; the discussion of subrou-
tine QUADKP (see Appendix) describes the numerical
technique used for the hyperbolic case,
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INl. NUMERICAL EXPERIENCE

Trajectories computed using single-precision deriva-
tives caleulated in the Encke manner should be slightly
more accurate than those generated using the Cowell
form of the equations of motion, provided that a proper
choice of central body has been made. The difference
between the two methods arises from the fact that the
relatively small size of the perturbing acceleration, as
compared with the central body acceleration, permits the
Encke scheme to retain more significance in the total
acceleration, as compared with the corresponding accel-
eration term in the Cowell scheme. It is assumed that the
reference orbit for the Encke scheme lies sufficiently close
to the true orbit so that the quantity p/R, < 0.03, where
R, is the position in the reference orbit while p is the dif-
ference hetween R, the position in the true orbit, and R..
Under this assumption, the main term in the acceleration
for the Encke method, viz,, — «/Ry {(p — F(Q)R), will
in general be at least an order of magnitude smaller than
the corresponding Cowell term, — aR/R?, for F{Q} = 3Q
= 3p+ (R, + p/2)/R? = 3p/R, at worst; thus [ p/R, ~
F(Q)R/R, | = 4p/R, and as R3/R® = 1 — 20, the ratio
of acceleration terms will never exceed 0.12. The ultimate
accuracy of the Encke scheme is tied to the accurate
solution of the two-body problem for obtaining the ref-
erence orbit; less accuracy in the reference orbit would
be sufficient for computation of the main Encke accelera-
tion term and a less accurate solution than this would
suffice for the perturbations.

Rounding error in the computation of the main Cowell
acceleration term propagates into the numerical solution
in a strikingly simple fashion—T,, the epoch of pericenter
passage, alone of the orbital elements is significantly per-
turbed. To demonstrate the effect of roundoff, a high
Earth-satellite trajectory was run with both Cowell and

Encke schemes; additional information was obtained by
successively chopping the last and the last two bits in
each coordinate of the acceleration vector at each inte-
gration step. A comparison of the effect on the orbital
elements at the first perigee point appears in Table 1.

As a measure of the over-all difference in the trajec-
tories, comparison of the difference in range 3R may be
made near the perigee. Under the assumption that T, is
the only orbital element to be affected, then

SR = R, — R msg*w_____m_\fl""fw
: ! 1 rcos F*

where

E® = - (E, + E.)

L
2
satisfies the equation
E* — esinE* = u (T ~T,*},
p. - %» (’I";l! ,.T'., T;'J?)

anr

=T

8T, = T4 — T4

FR* =

where the superscript 1 refers to a comparison trajectory
while the superscript 2 refers to a perturbed trajectory.
SR* is the extreme value of R ocourring at n (T~ 5L,") =
dr{eost e = £ V1 = £}, A summary of results in Table 2
serves to demonstrate the adequateness of the conic
approximation, The small perturbation in T, contributes
only a small difference in the coordinates, if a comparison
is made at a greater time from perigee.

Tabie 1. Orhital elements at perigee

Case o) 2 7.t i “ &
kem sec deg deg duy

Hormai Encke §901.362 0.985346%7 &9.077 19. 599984 00,9443 22218234
Encke with fost bit chopped B901.362 0.98534487 &9.074 19.5999445 200.94431 227.18236
Encke with fost two bits chopped BOO1.3482 0.928534497 49088 14.599984 200.94431 22218333
Normai Cowell B901.425 C.98534641 1:0%9 1%.600052 10094427 2218245
Cowell with fost bil chopped 8901 430 0.94534644 27.063 1#.60003% 200.94428 23718243
Coweli with lost twa bits chopped BOOE 402 098534650 38.793 19600047 20094429 227.1824%
*Cloest epproack distence.
bTime of paricenter possuge, poat 45¢ 1% 5Bm oftar the injection spoch.

10
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As a further comparison of the Encke and Cowell
methods, three lunar trajectories were selected which had
flight times of 35 hr, 45 hr, and 66 hr, respectively. The
trajectories were characterized by an injection aititude of
about 200 ki near perigee and a termination of 1738.09
km from the center of the Moon. Table 3 compares results
obtained by the running of each trajectory four different
ways: {1) Encke, Moon-centered second phase; (2)
Encke, Earth-centered second phase; {(3) Cowell, Moon-
centered second phase; and (4) Cowell, Earth-centered
second phase. In all instances the second phase was
started at a distance of 50,000 km from the center of the
Meon. It appears from the data that ali four methods are
consistent and vield results of satisfactory accuracy.

The 68-hr lunar trajectory was used to estimate the
effect of integrating in a coordinate system based on the
frue eguator and equinox of date. A precise comparison
is impossible, since injection conditions expressed in the

of-date system must be rotated to the mean equator and
equinox of 1950.0 for integration in the normal case. Such
an operation introduces a small variation in the injection
coordinates which propagates under integration into the
numerical solution, thus partially masking the difference
between the two coordinate systems. However, an esti-
mate of the variational effect was made which couid
account for about half of the observed difference in the
Cartesian coordinates at lunar encounter. The perturba-
tions in these coordinates, arising solely from the two
different coordinate systems for integration, seem there-
fore to amount to about 1 km; in addition, the fight time
received a perturbation amounting to about 0.6 sec. These
differences appear to be significant when viewed in the
light of the data in Table 3.

As interplanetary trajectories are usually run in three
phases--phase one Earth-centered, phase two Sun-
centered, and phase three target-centered—it is necessary

Table 2. Range differences near perigee

SR ot 459 12+ BR ot 45¢ 14° Maximuns 3R
Lase feres km b
Computed® Obterved® | Computed® | Observed® | Computed® | Observed®
Encke with lust bi! cthopped minus normal Encke —0.014 —0.014 0014 0.010 0014 G014
Encke with two bits chapped minus normal Encke Q.0350 0.052 —0.050 G.052 0.05% 0.0653
Marmaol Cowell minus normai Encke - 215.078 —114.943 212824 2313.705 220.168 220.064
Coweli with iast bit chopped minus normal Cowell 23.025 23017 —22.880 - 32,850 23.557 23.548
Cowell with two bitt chopped minus normaol Cowai 76,446 76.631 —76.144 76,103 78.450 78.413
*Watues derived from the orbitet sfements,
E¥gives derived from the nammal traisctory auviput,
Toble 3. Comparisen of lunar trajectories
Cune Lynar fmpoct Time B-T B-R #
km ket deg
35" Encke E-M 110" 53" 0Bfs19 44,129 9.785 17,3383
35* Encke E.E 19 10" 53™ 08624 44,1432 ¢ 7ES 27,3384
35" Cowell E-M 19 10" 53™ 08420 44 139 787 27.3347
35" Cowalt E.£ 1% 10" 537 082625 44,149 $.787 27,3341
A5 Encke E-M 120" 51 3279 19.0%7 14,500 46,8672
45" gncke E-E 120" S1™ 327284 19.04% 14.499 46,8322
45" Cowell £-M 1930t sI™ 32079 19031 14.4%% 46,8475
458 Coweil £-8 1% 20" 51™ 324287 19.047 14.500 £6.8408
44" Encke E-m 17 49T 03028 270.281 - 88 532 37,1864
54" Encke B ¢ 17" 49T 031047 270.324 - 88,536 37.1848
&6" Cowell .0 2% 17N 49™ 031064 270.300 -~ 34, 565 3719046
46" Cowell E-F 2¢O 49% 03078 270.33% wBB.57Y 37.1894
*The arbital elements H + T and B + R ore computed clong with |, the inclination, &t tha Hme the distonce 1738.07 km from the cander of the Moon isx reqched.

11
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at the change into phase two to compute the velocity of
the Sun by numerical differentiation of position coordi-
nates, which is inaccurate on two counts: firgt, the position
ephemeris of the Sun displays noise in the seventh fig-
ure of the positions, which gives rise to inconsistencies
in the velocities as obtained from neighboring segments
of the ephemeris; second, even with eight-figure accuracy
in the position data, calenlation of the velocities entails
differencing so that significant Bgures are lost.

To determine the magnitude of the error introduced in

the velocity coordinates as used for normal cases, an 80-
day arc of the Earth's orbit was smoothed by a least-
squares fit which utilized a numerical integration of the
equations of motion. Residuals on the order of two units
in the seventh fgure of the position coordinates were
obtained by the fitting process. As a by-product of the fit,
smooth velocity coordinates were obtained which were
therefore consistent with the new position coordinates.
Intermediate values of the velocities were then obtained
by both a numerical differentiation of the new position
ephemeris and s direct interpolation of the velocity
sphemeris; a comparison of the results revealed maximum
{ifferences of about 0.02 m/sec, or discrepancies in the
sventh figure. Next, the original noisy position coordi-
ates were differentiated and compared with the inter-
olation in the velocity ephemeris. In this case, the
aximum differences were observed to he about 0.13
/sec, or a relative error of about 5 X 10,

An actual Venus trajectory with a flight time of 108
ys was studied for the effect of inaccuracies introduced
the velocity transformation in the transfer to phase two
the systematic variation of the epoch of the coordinate
nge, and also by running a trajectory which integrated
centrically all the way to Venus encounter. The results
summarized in Table 4, which gives the deviation of
coordinates at the fixed epoch of transfer into phase
e, and of the time of Venus encounter, all referred to
mdard trajectory which used the ordinary phasing.
differences in the coordinates may be explained
+ well by the known magnitude of maximum error in
elocity of the Sun and the value of the appropriate
tonal coeflicients. The trajectory, which was inte-
4 all the way to Venus in phase one, does not suffer
the velocity problem, but because the noisy position
nates used in the calculation of the now large per-
ions in the acceleration undonbtedly contribute a
:ant amount of error in the solution, this technique

ot solve the accuracy problem.

Encke and Cowell methods for the interplanetary

e parmnarerd By o rannimner YVarase avied Mare $froion.

tories in which the transfer point from phase one to phase
two was kept fixed for the respective trajectories. Evi-
dently, the difference between the two methods shows up
more distinctly the longer the flight time, but is of accept-
able magnitude, as Table 5 mdicates.

In summary, the trajectory program gives consistent
single-precision results for the Encke and Cowell meth-

Table 4. Differences at transfer to Venus-centered phase

a 3% ar 24 3TF
Trensfer time Mm® M Mm® sec
9350 0.4 0.1 .0 78
?3.75 —.3 0.0 2.0 R ¥
4,00 .7 1 0.0 - F
94,25 L 1Y) —~a.7 4.8 A0
94.50 5,2 -1 &.1 w32
0475 3.4 -3 2.1 - 1585
95.00 R ¥ .2 2.1 w181
95.25 - 1.8 w33 o L2 B
95.50 - 1.9 il 4 0.0 -4
2575 - 1.2 -8 6.0 - 370
&G0 ~2.3 ~07 w01 - 303
F6.25 wZ.4 -9 w2 - 337
94550 -3 7 ~- 1.3} e (.2 — 38t
675 -7 1.3 w33 ~- AD3
$7.00 ~ 3.7 14 G4 -~ 4320
97,25 .7 we § .5 .4 - 414
97.50 2.7 el -] —-0.5 - k&l
Fr5 ~ 2.8 -1.7 o 0365 Lx - 24
FE.5G -7 — 1.8 -y r X Fii]
wh.25 Rl -1 —§.9 -7 - AF2
9850 —-31.0 - 1.9 wir? - A7
Ali guocentric 0.6 - 1.0 .5 -3
*The transier time reprewents the Julisn dote ia E.T. ot which estsy wos mode
inte The haeliogentric phow,
Pihagamaters.

Table 5. Comparison of interplanetary trajectories

™ B.-T* B-R R
Case

ot fm ] deg
108 Venus, Encke 51279 | —41209 16944 1 153.9194
108% Yenus, Cowell | 56,636 | ~4120.5 1690.2 | 153.9295
118% Yenus, Encke 25136 F 496328 | ~&20020.9 74,8357
LB Yenuy, Coweli | 24,827 | 249429.9 | ~630022,0 | 74.835%
231° Mars, Encke 9742 (501504 e ASIF A P IFR AYET
231 Mars, Cowail 34938 [~ 502054 ~A541.3 1 373.4134
1Tha timw of Hight i meassred fram on arbitrory spoch.
YThe orbitel sb 5 ore eqfcuioied either o} planstary encounter or at ciosest
appraach,
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ods, but the ephemeris problem for interpianetary flight  Jet Propulsion Laboratory to obtain smoothed position
presents a source of systematic error. This problem will  and velocity ephemerides which are gravitationally
be largely eliminated by a study now in progress at the  consistent.
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IV. OPERATING INSTRUCTIONS AND DESCRIPTION OF INPUT

A. Operation of the Space Trajectories Program
on the IBM 7090

The Space Trajectories Program is designed to accept
offfine card input in BCD on tape A2, to prepare an offline
BCD output tape on A3, and to obtain ephemeris infor-
mation from a tape mounted on A8 assumed to be written
in high density. For operational convenience, the off-
line output may be monitored on the online printer by
depressing sense switch 8, which permits simultaneous
off- and online output. The other sense switches, the sense
lights, the panel keys, and the sense indicator register are
not used; additionally, the floating-point trapping mode
of execution is not used.

A machine run usually consists of several cases which
are defined by the appropriate case parameters punched
on cards in a format accepted by the 7080 version of
NYINPL, a2 SHARE input routine. The sets of cards which
define individual cases are separated by TRA 3.4 cards,
and each set may be trailed by its package of phase cards
to complete the input for running the trajectory. A
description of the available case parameters appears in
Sections IVD-1 and D-2.

For the normal type of "minimum print” trajectory, a
set of phase parameters suitable for the case may be
selected from the parameters assembled in the program
to be used for the standard targets Earth, Moon, Venus,
and Mars. The values of the stored parameters appear
in Section IVF. Complete control over the trajectory may
be obtained by the appropriate choice of phase param-
eters for each sequential phase belonging to the case; the
phase parameters read in are saved and may be used for
subsequent cases so that one run might consist of several
cases, all using a common set of phase cards which is
read in but once. The functions of the specific param-.
eters used in a phase are described in Sections IVE.2
and E-3.

B. Basic Coordinate Systems

The fundamental coordinate system used by the Space
Trajectories Program for reference of the equations of
motion is the Cartesian frame formed by the mean equator
and equinox of 1950.0; the position of the mean eguator
of the Earth and the ascending node of the mean orbit
of the Sun on that equator, taken at the beginning of the
Besselian year 1950, serve as the definition. The X axis is
directed along the node, the Z axis northward above the

4

equator, and the Y axis in a direction to complete the
usual right-handed coordinate system. The auxiliary ref-
erence frame based on the Earth’s mean equator of date,
and the mean equinox of date defined by the Sun's mean
orbit about the Earth (ecliptic of date), may be obtained
from the 1950.0 system by the application of the preces-
sion as described in the discussion of subroutine ROTEQ
(see Appendix).

Reference to the Earth's true equator of date is obtained
by the rotation of the mean equator of date about the
mean equinox of date to the ecliptic of date via the mean
obliquity of date, rotation in the ecliptic to form the true
equinox of date via the nutation in longitude, and, finaily,
the rotation about the true equinox by means of the true
obliquity of date formed by augmenting the mean oblig-
vity by the nutation in obliguity. The three rotations
deseribed result in but a small change, hence the mean
and true coordinates in general agree through the first
four figures. The description of subroutine NUTATE {see
Appendix} contains formulas for the rotation matrix which
performs the necessary transformation from mean coordi-
nates to true.

C. Coordinate Systems for Input

Provisions have been made to input directly into the
Cartesian equatorial system of 1950.0 the basic coordi-
nate frame for the numerical integration. A simple rota-
tion about the mean vernal equinox of 1950.0, with
magnitude the mean obliquity of 1950.0, permits input
in the mean equinox and ecliptic of 1950.0. With the
aid of the nutations in longitude and obliquity, along
with the general precession, it becomes possible to input
in either the true equator and eguinox of date or the
true equinox and ecliptic of date. The Cartesian coordi-
nates expressed in any one of the above four systems
may refer to one of the six available bodies Earth, Moon,
Sun, Venus, Mars, and Jupiter.

It is convenient to input the injection conditions in a
spherical set associated with one of the Cartesian coordi-
nate systemns which describes the pesition vector in terms
of range and two angles, and the velocity vector corre-
sponding as velocity (speed} and two angles. For this
purpose, the Cartesian frame is regarded as being at rest
in the case of the true of-date systems; the reference
frame may be thought of as being “osculating” rather than
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undergoing a slow rotation in inertial space and thus
forming a rotating coordinate system. The set of equa-
tions necessary for the transformation from sphericals
to Cartesian, along with the definitions of the angles,
may be found in the description of subroutine RVIN
{Appendix).

The Earth-fixed spherical set of injection conditions is
based on a Cartesian coordinate system assumed to rotate
with the Earth: the x —y plane coincident with the
Earth’s true equator of date, the x axis lying in the Green-
wich meridian, and the z axis along the Earth's spin axis.
As described in subroutine GHA {Appendix), a formula is
furnished which gives the Greenwich hour angle of the
true vernal equinox of date so that the Earth-fixed Car-
tesian coordinates may be referred to the true equator
and equinox of date via a simple rotation. Of course,
the velocity vector in the Earth-fixed system is affected
by the Earth’s rotational rate; appropriate formulas for
the velocity transformation to the nonrotating system are
given in subroutine EARTH {Appendix).

A similar treatment of the Moon gives rise to injection
conditions expressed in selenographic (Moon-fixed spheri-
cals) coordinates; formulas for the position of the Moon’s
true equater, the prime meridian of selenographic longi-
tude reference, and the rotation of the Moon are con-
tained in the discussion of subroutines XYZDD, MNA,
and MNAMD {Appendix).

A final input coordinate svstem, based on orbital ele-
ments of an escape hyperbola from the Earth, completes
the number of options. The hyperbola has been charac-
terized by its ascending asymptote given by right ascen-
sion and declination, by the energy, and by the constraint
that the launch site lie in the orbital plane. The actual
shape of the hyperbola and the injection point are given
by the remaining two parameters, the path angle and
the range at the injection time.

The equations for the energy-asymptote input option
may be developed as illustrated in the following:

Sketeh 3. Lawnch geometry

Given ¥, the azimuth at the launch site, as in Sketch 3,
W, o= coss o= sin m, cos @y

where @, = 28.309 deg, the latitude of the launch site,
a program parameter.

8 = {cos D, cos By, cos By, sin Oy, sin Py},

the ascending asymptote

— W, sin @y sin Py - cos O,V o $, — B
W
cos &,

i

if the radicand is negative, the error message

“DECLINATION OF ASCENDING ASYMPTOTE
OUT OF BANGE”

is printed and the trajectory is aborted.

W, = — L,W’s! + 5., ‘

5.

completing the construction of W, the unit angular
momentum vector,

Ve o+ 3;?_%, the velocity

oy = |R X V= RV cos T, the angnlar momentum
£46f ..
g% = 1 = =t for the eccentricity
“®

P

Sketch 4. Relationship of uscending
asymptote and perigee

From sin Y= sin {v—7), invert to obtain —90°
< o — T < 90° and v, the true anomaly. In particular, for
I == 00°, an expression for 0., the maximum true anomaly

(Sketch 4} is

15
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1
Vpax & COS7H ( g F B0% < Vypar < 3180°

R = R{cos (e — #) 8 + sin{pg,, — 0] 8 X W}
The velocity vector (Sketch 5) is given by

Vo V{cos?w; R+ sinl‘%}

compieting the construction of the Cartesian coordinates,

WxR

R

Sketch 5. Description of the velocity vector
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D. Relationship Between Case Analysis and Phase Analysis

Store REPEAT
in REPFG
h 4
Augment CASE
by 1
Set PH1 to read Set PH1 to reod
from internal REPEAT == —{0 Check REPEAT == ..L.0 | from SAVE 1; set
phase cards as - \Qﬁﬁﬂ' PH3 to read into
determined by SAVE 1
TARGET; set PH3
to read into wle
SAVE } .
b4
To phase
anclysis

For CASE ANALYSIS, input desired value of CASE and REPEAT.

If REPEAT = 0, all phase cards are read in and buffered at the same time.

- Phase I cards
TRA 3.4

Stack of phase cards for all phases
to be read in for the present case

-

T.ast phase cards
TRA 3,4

Observe that the symbolic address card
CASE 0 -1

may be used to effect (CASE) = @ at the phase-analysis point of the program.

17
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D. {Cont'd}

1. Case Parameters

Input
focation
{decimal)

100109

1:0
111
112
113

1i4-115

116-118
116-121

122
123

124
125
126
127
128129

i36
137

138
138

Class
freld

BCD

BCD
BCD
oCT
oCT

DEC

DEC
DEC

DEC
DEC

DEC
DEC
DEC
DEC
DEC

DEC
OCT

DEC
BCD

Program

Identification
neme

60.character comiment field printed at top of each page of output
TARGET BCD name of target body

KERN BCI> name of central body at injection
REPEAT Phase input control word

INJECT Injection input type

Ti Injection epoch in sexagesimal format
X1,Y1, 21 Injection coordinates identifled by INJECT
Xi,Y1,Z21.

GAMMAC Thrust attitude angles giving fixed direction of thrust vector
SIGMAC

ACC Thrust magnitude in 1b force

MASS] Initial mass inlb

MASS.: Mass flow rate in Ib/sec

TBO! Duration of burning in sec

TGOL Epoch for ignition of motor

RADP Coeficient for radiation pressure
FLAGS Bit 34 = integrate frequency equations

Bit 35 = integrate variational equations
T(X) Single-precision floating-point time
EQUNOX Injection equator and equinox

2. Detailed Description of Case Parameters

8

Program
name

TARGET

KERN

REPEAT

Explanation

May be Earth, Moon, Sun, Venus, Mars, or Jupiter. It is used to define the target
guantities in the various print groups and to select the appropriate set of minimum
phase cards when REPEAT == ~0 and the target is neither the Sun nor Jupiter.

May be any of the bodies as used with TARGET. KERN defines the central body
of the coordinate system at injection and may be distinct from the central body
of integration for phase one.

Determines whether or not phase input cards are to follow:

Value of
REPEAT Effect
- Does not input phase cards but uses one of the four internal

sets as determined by TARGET.
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D2. (Cont'd)

Program ;
name Explanation
—{ Uses the internal sets of phase cards as with REPEAT = ~1;
modifications are read in on top of working buffer, and altered
phase parameters are stored in a special buffer to be used
later. After last cards for the last phase have been read in,
REPEAT is set to +1.
+0 Similar to REPEAT == —{ but does not make use of any
internally stored phase cards.
+1 Assumes all phases have been previously loaded and uses
appropriate buffer for input.
INJECT The seven available tvpes are as follows:
Value of ,
INJECT Coordinate System
+{ Inertial Cartesian, equatorial
e Inertial Cartesian, ecliptic
+1 Inertial spherical, equatorial
-1 Inertial spherical, ecliptic
+2 Earth-fixed spherical
+3 Selenographic (spherical)
+4 Energy-asymptote Earth-centered equatorial
Note: For INJECT = =0 or =1, coordinate system may be medified by
Ti Double precision epoch of injection in the two-word fixed-point decimal format

which is denoted by “sexagesimal format.

”

Format of the two words is

nn = minutes

ss = seconds

yvymmoddhh,nnssfff
where the fields are
yy = year, e.g., 61 for 1961
mm = menth, ¢.g,, 11 for November
odd = day, 3-digit field, where zero must appear before digits for day of month
kh = hours past start of day

£ = milliseconds

Note: This epoch is modified by T(X).

19
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D2. {(Coni'd)
Program Explanation
name
X1, Y1, 71 Value of .
y 2dy Aedy I ¢
X1, Y1, Z1. INJECT nterpretation
+0 R and V in equatorial Cartesian coordinates
- R and V in ecliptic Cartesian coordinates
+1 R, &, ®; V, T, = inertial equatorial spherical coordinates
] R, 8, A; V, 1, S inertial ecliptic spherical coordinates
+2 1, &, §; 0, v, ¢ Earth-fixed spherical
+3 rer b e 00 Yoo % selenographic (spherical} coordinates
4 S B, T; €3, ®5, 05 energy-asymptote in Earth-centered equa.-
torial system
Interpretation is modified by EQUNOX below. Position units are km, velocity
units are km/sec, and angles are in deg,
GAMMAC, At injection the position vector R is formed. A fxed-thrust attitude vector C is
SIGMAC characterized by the path angle y. and the azimuth angle o. with respect to a plane
perpendicular to R and the Z axis as a reference direction. R may be a body-fixed
vector so that y. and . would have a different interpretation if the selenographic
input option were used rather than Moon-centered Cartesian, for instance.
For powered-flight computation the following formula is used for the accelera-
Hon with the parameters described below:
- —F et
&= pp—— TQ)Cf{:}:‘l’},ﬁ}”_Tfj + by
ACCI F, thrust in 1b force; internally multiplied by g = 0.0098 to obtain 4 in km/sec?
MASS1 m,, initial mass in 1b
MASS.1 m, mass flow rate in Ib/sec
TBOL £y, duration of buming in floating-point sec ‘
TGOL Ty, epoch of motor ignition in sexagesimal format as with T, or the modified
sexagesimal format as with PRTEND in Section IVE-3. -

Further phase control must be provided for the powered flight as indicated in
the low diagrams of the phase logic (Section V) and the description of the phase
parameters; i.e., there must be a phase to start the motor.

For radiation pressure calculation the following equation is used:

.y
a =g Ka? &,

where

a = number of km/A U, included to make o*R,,/H3,, dimensionless
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D2, (Cont'd}

Program
name

RADP

FLAGS

T(K)

EQUNOX

Explanation

R,, = the Sun-probe vector
K = 103034 X 10 b force/m?®, the solar-Bux constant
A = effective area in m® |
W = mass of spacecraft in [b

£ = 0.0088, conversion factor to express acceleration in kim/sec? internally

Ag/W with units as above, m*-km/sec? 1b force

The two low.order bits are used to control the introduction of the 10 frequency
equations (by, = 1) and the 36 variational equations (b,; = 1} for numerical
integration in the Jet Propulsion Laboratory tracking program,

After T1 is converted internally to double-precision floating-point sec past ¢
January 1, 1950, T{K} is added on to give the eflective injection time.

1f the BCD field is all blanks, then the input is regarded as being expressed in
the true equator and equinox of date or the true ecliptic and equinox of date.
Otherwise the reference is the mean system of 1950.0. As EQUNOX is displayed
along with the injection conditions, it is customary to use the six characters
“1950.0” for the latter case.

The data for case parameters describing the injection conditions and powered-
flight parameters and the associated control is terminated by the card TRA 34.

Further cases may follow unless the phase-card input is triggered via
REPEAT = 0. In that event, of course, all the necessary cards for the various
phases must follow, then the subsequent cases.
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E. Phase-Card Reading and Buffering

1. Storage Layout of Internal Buffers

Input locations USE buffer
140t0 179 mapped onto SAVE
buffers & REPEAT = 0
USE buffer SAVE,
> 10 buffers
SAVEu}
Nominal phase cards stored in core:
4 9 d &
& phase 1 & phase 1 & phase 1 2] phase 1
¢ phase 2 o phase 2 © phase 2 Q phase 2
9 phase 3 g phase 3 & phase 3
{ Moon
© Sun
¢ Venus
g Mars
@ Earth
2. Phase Parameters
Locati Type Program s
field name !
140 QCT  LAST Controls last phase and some of the print
141 BCD  REND Body used to form R,
142 DEC Value of R,, used to terminate phase
143 BCD  REND. Body used to form R,,
144 DEC Suppression distance from central body

22
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£2. (Cont'd}

Location
145
148
147-148
149
150
151-162
163-166
167
168169
170171
178
179

Type
held

oCT
BCD
DEC
ocT
8Ch
DEC
DEC
oCT
OCT
oCT
OCT
BCD

Program
name

MODE
CENTER
H
DOUBLE
HKERN
PRTEND, DELPRT
ODDPRT
GROP
CODE1
VIEW
ORBETT
EQUNXI

3. Detailed Description of Phase Parameters

Program
name

LAST

Description
Integrate Encke or Cowell
Central body for integration
Initial step size, modified sexagesimal format
Number of initial doubles
Body from which to compute step sizes
3 print end times and intervals
¢ odd-print epochs
13-octal-character field to control print groups
24-octal-character field for station prints
24-octal-character feld for stations for view periods
Reference for B+ T and B+ R in conic output

Qutput equator and equinox

Explanation

= call PRINTD at T

SgR

4 = don't call PRINTD at T'¢

0 = reset Tope to T¢ at start of phase

bit 34

s |

0 = call PRINTD at end of phase
1 = don’t call PRINTD at end of phase

§ = last phase
1 = more phases to follow

bit 33 { 1 = use old Tewr from previous phase

PRINTD is the subroutine which prints the selected groups.

Trar is the print epoch constructed in the previous phase which would have been
reached for printing had the previous phase extended in time to Tpge.

When new phase cards are being read, bit 35 = 0 also flags the end of the read-
ing process.

T'$ is the epoch at change of phase.
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E3. (Cont'd}

L)

Program

name

REND
REND.

MODRE

CENTER

Explanation

End-of-phase devices:

A phase may be terminated by one of the following three conditions:
L Bewp

2. Benp
3' TEN{)
1. Raun: The BCD name of the body to which Ryyy refers is input in 341; the

desired value B,, = Ry is input in 142, Rewy is used as a dependent variabie
stop.

[

. I?{,;Nz,: The BCD name of the body from which é” is measured is input in 143;
144 is interpreted as:
(1) (REND. + 1) = 0: suppress R test
(2} (REND. + 1} 3£ 0: test effective in the following ways:
a. [f CENTER = TARGET, stop at A=0viaa dependent variabie stop
b. If CENTER =% TARGET, suppress test until:
1. B> (REND. + 1) if (REND. + 1) > 0; or
2. R< {REND. + 1} Hf (REND. + 1) < 0
R refers to the central body.

3. Tx.\'r;i Texp *= max {Tf,b, Tz.\'bl, Ta:xn,_., Ts.\:z)a} where the T;;x;,;s are the end of
print times input in 151, 155, and 159 and T'¢ is the epoch of phase change.

0 == integrate the equations of motion as developed for a Cowell scheme

1 = integrate Encke’s modification of the equations of motion

Any of the six bodies may be used as the central body; but for Bgup and -
the foliowing bodies are available:

Central Body Perturbing Bodies
Earth Moon, Sun; Jupiter if R > 10% km
Moon Earth, Sun

Sun

Venus
All remaining bodies
Mars

Jupiter

Adams-Moulton step size in modified sexagesimal format: yy =0 and mm = 0,
so that the remainder is converted to sec. If (H), (H + 1), and (DOUBLE) = 0,
the step size is selected automatically as a function of HKERN and is halved or
doubled under program control as the need arises.
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E3. {(Cont'd]

FProgram
name

DOUBLE

HKEBRN

PRTEND,
DELPRT

ODDPART

phase n — 1

Explanation

If (H) or (H + 1} 5 0, a fixed-point number in this field gives the.number of times
the step is to be doubled consecutively.

Selects the hody from which the step size is to be computed; resultant calculated
step size is used for other purposes so that HKERN is effective even though
(H) or {H + 1) 5:0.

The 12 input locations are divided into three 4-word Belds giving control over
print intervals:

Texo,» ATerr,; Texo, ATerr,s Tevny, ATeay,

The Tgxn, may be input as epochs in the usual sexagesimal format or as intervals
past injection expressed in the modified sexagesimal format in which yy = mm = (.
In the latter event, the epoch Trun, is formed by augmenting the injection epoch
by the interval. The ATwyr, are intervals as represented in the modified sexagesi-
mal format.

If Texp, is input as zero, it is replaced by a large number but is ignored in the
calculation of Tewxp. Finally the Tewp, are internally sorted and consequently
need not be input in ascending sequence.

The location for Texs, is PRTEND + 4 or DELPRT + 2, since PRTEND and
DELPRT define the first of the two words in Texp, and AT respectively.

Toop, and Teos, are input to provide execution of PRINTD without interrupting
the main printing sequence. The format is the same as for Tevp, and the two
resultant epochs are sorted as before. Topp, = 0 is replaced by a large number,

Treatment of print times:

e phase n
) ATear,

i
fod i ! Jord

T¢ Trar Tevo, Tewo,

At time of entry to the new phase, Tppr Is the next print time as determined
by phase n — 1. If the print reset option is chosen, Terr, = T¢ will be the first
print time. Qtherwise,

Terr, = min {Tepr, Tenw,}
No matter how Ty, is chosen,

Tony. = min {TpRTa + ﬁ.\’rpnrl, TEN”I}’ if Tmm1 o> T?m‘o;
FRI min {Tgxnj + QT?RT:, TENZ)E} ﬂthemise

Thus the Texp,’s function is to reset the printing interval and print epoch. T¢ is
the time at which the nth phase starts.

25
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P:‘?“g’:;m Explanation
GROP The 12 octal characters of GROP are mapped onto the 12 words GROPS + 0,

- ,GROPS + 1:

GROPS  +0  geocentric
+1  geocentric conic
+2  heliocentric
+3  heliocentric conic
+4  spacecraft and powered flight
+5  target
+6  target conic
+7  printat R=0 {ventral body only)
+8
+9
+10
+11

not used

The 3 bits of the octal digits have the following use:

bit 1 0 = print effective whenever called
I = print effective as a function of the status of phase

holds for

bit 2 0 = print only when the start-of-phase condition holds } bitl = 1;
“ | 1 = print only when the end-of-phase condition holds { ignore if
bit 1 = 0

bit 3 3 0 = ecliptic ’output
== equatorial cutput
Special cases are:
1. All bits zero— don't print group
2. Configuration = 3)q, same as (1) above

At R = 0 print, the value in GROPS + 7 is mapped onto the cell for the central
body conic and PRINTD is executed.

Start of phase means the first time that PRINTD is called in the phase unless the
end-of.phase condition has been met at that time.

End of phase means that phase has been terminated by one of the following
conditions:

1. R;;x:) attained
2. B test fulfilled
3. Tgm) attained
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E3. (Cont'd)

Program
name

CODE1L

VIEW

CRBETT

Explanation

Only the leftmost 15 octal characters of the two input words are used. 0 = suppress
station, 1 = include station. At print time, station print is suppressed if y; <—10°¢

The 15 stations are, in order:

1. Antigua 9. Grand Bahama Island
2. Ascension 10. Johannesburg

3. Millstone Hill il. Hawaii

4. Mobile Tracker 12, Jodrell Bank

5. A M.A. G.E. Tracker 13. Puerto Rico

6. Bermuda i4. San Salvador

7. Goldstone Receiver 15. Woomerz

8. Goldstone Transmitter

Printouts of the station occur at ¥%; = 0, provided y; 8 y,, and at y; = v,, where
yo may be input by the symbolic card

STACRDD-001 y,
Enough triggers have been provided to take care of a maximum of five stations.

Provisions have been made for symbolic card input of station coordinates and
names if necessary.

STABCD STACRD
0-3} Station 1 name 04,
4.7} Station 2 name 18,
. 2r, Station 1
. 3fs,
) 4fe,

-
-

-

I£ 0, uses T lying in the orbital plane of body concerned. If 1, uses T lying either
in the equatorial or ecliptic, as called for by the conic GROPS location.

The orbital planes are defined as follows:

Body: Orbital Plane With Respect to:
- Earth Sun

Moon Earth

Sun Earth

Venus Sun

Mars Sun

Jupiter Sun
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Program .
name Explanation
EQUNX1 1f blank, output is referred to true equator or ecliptic and equinox of date; other-

wise, the reference is to the mean eguator or ecliptic and equinox of 19500,
Normally the BCD "1980.07 is used here when mean equator or ecliptic and
equinox of 19500 is desired.

The cards representing input for the phase parameters for a given phase are
terminated by a TRA 3.4 card. The last phase cards read in are indicated by a
zero in the low-order bit of the parameter LAST.

F. Standard Phases

Standard phases are available for the Moon, Earth, Venus, and Mars as the target. The words TARGET
and REPEAT in the case parameters control the use of the stored parameters.

I REPEAT = —1, the standard phases are used.

If REPEAT = —0, the standard phases are used but modifications may be read in to replace the stored
parameters.

The stored values of the standard phases are listed in the following:

1. Stored Phase Cards for Moon as Target

28

Location Type field Phase 1 Phase 2
140 ocr -1 0
141 BCD MOON MOON
142 DEC 30E3 1738.09
143 BCD MOON MOON
144 DEC 330E3 1E3
145 OCT 1 1
146 BCD EARTH MOON
147 DEC 0,0,0 06,0
150 " BCD EARTH MOON
151 DEC 15000 20 00,0
153 DEC 15000 26 00,0
155 DEC 0,000 0,000
159 DEC 0,000 00,00
163 DEC 0,000 00,00
167 oCT 3500 0 00 06 000 11201 1100 000
168 oCT 0,0 6,0
176 oCT 0,0 3,0
178 OCT 0 0
179 BCD blank blank
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2. Stored Phase Cards for Earth as Target

Location

140
141
142
143
144
145
146
147
150
151
153
155
159
163
167
168
170
178
179

3. Stored Phase Cards for Venus as Target

Location

140
141
142
143
144
145
146
147
150
151
133
155
159
1683
167
168

Type field

OCT
BCD
DEC
BCD
DEC
oCT
BCD
DEC
BCD
DEC
DEC
DREC
DEC
DEC
oCT
OoCT
oCTt
OCT
BCD

Type field

ocT
BCD
DEC
BCD
DEC
OoCT
BCD
DEC
BCD
DEC
DEC
DEC
DEC
PEC
oCT
ocT

Phase 1

EARTH
2.5E6

EARTH

0

1

EARTH

0,0,0

EARTH

140 00,0

140 00,0

0,0,0,0

0,0,0,0

0,0,0,0

55 00 0 00 00 000
0,0

0,0

0

blank

Phase }

EARTH
2.5E8
VENUS
0

1
EARTH
0,00
EARTH
20000
2000,0
0,000
0,000
0,000
5560000060000
0.0

Phase 2

-1
EARTH
2.4E8
EARTH
152E8

1

SUN
0,00
SUN
180 00,0
180000
0,000
0,000
00,00
00 22000 00 000
0.0

0.0

0

blank

Phase 2

-1
VENUS
2.5E8
VENUS
—110E86
1

SUN
0,00
SUN
196 00,0
186000
0,0,0,0
0,0,0,0
80,00
00 22 6 00 00 000
0,0

JPL TECHNICAL REPORT NO. 32.223

Phase 3

EARTH
8378,
EARTH
1E3

1
EARTH
0,00
FEARTH
200 00,0
200000
00,00
0,000
0,000
16 200 01 00 000
0,0

0,0

0

blank

Phase 3

VENUS
6100,
VENUS
1E3

1
VENUS
000
VENUS
200 00,0
200 60,0
0,000
06,00
00,00
1020022 00 000
0,0
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4. Stored Phase Cards for Mars as Target

Location
170
178
179

Location

140
141
142
143
144
145
146
147
150
151
153
155
159
143
167
168
170
178
179

Type field
OoCT
CCT
BCD

Type field

ocCT
BCD
DEC
BCD
DEC
ocT
BCD
DEC
BCD
DEC
DEC
DEC
DEC
DEC
GCT
oCT
19104 3
OCT
BCD

Phasze 1
0.0
0
blank

Phase 1

EARTH
2.55.6
MARS
0

1
EARTH
0,00
EARTH
20000
26 00,0
0000
00,00
0,000

55 00 0 0060 000

0,0
0,0

0
blank

Phase 2
6,0

blank

Phase 2

~3
MARS
2E8
MARS
240E8

1

SUN
0,00
SUN
230 00,6
250 00,0
0,000
6,0,0,0
0,000

00 22 0 0G 00 000

0,0
0.0

0
blank

Phase 3
4.0

blank

Phase 3

0
MARS
3415,
MARS
1E3

1
MARS
060
MARS
27000,0
276000
0,0,0,0
0,0,0,0
0,000

102002200000

0,0
0.0

1
blank



JPL TECHNICAL. REPORT NO. 32.223

V. FLOW CHARTS AND METHOD OF CONTROL

A. Control in the Space Trajectories Program

After the necessary transformation of the injection conditions to the Cartesian
coordinates based on the mean equator and equinox of 1950.0, the Space Trajec-
tories Program is controlled primarily by the subroutine MARK (see Appendix)
which performs the stepwise numerical integration of the equations of motion
to obtain the solution at desired points along the trajectory. The trajectory is
divided into phases to permit control of output format and print frequency and
of the numerical integration process itself. Each phase is characterized by a set of
phase parameters which are interpreted before the numerical integration proceeds.

During numerical integration in a phase, the derivatives are requested by
MARK; the derivative routine provides the necessary information and also per-
forms the caleulation of the auxiliary dependent variables which MARK might
need as requested by the associated dependent variable triggers. The end-of-step
routine monitors the numerical process by computing the step size and com-
municating this information to MARK, by control of rectification, and by deter-
mination of closest approach to a noncentral body.

At the print times, as determined by the triggers to MARK, the requested
output groups are printed as described in Section VI
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B. General Flow in Space Trajectories Program

32

Read cards for

initiai conditions

)

Ffransform initici conditions to

Read in phase parameters via

1950.0 Cartesian system

Print via

time stop

Transform phase

+¥

cards if necessary

Read in phose parameters

purameters

) 4

Set yo MARK

for cyrrent phoase

for integration

Call MARK

y

reference orbit

Rectify

numericai integration of

equations of motion

MARK, routine for stepwise

A

Print vig R = O trigger

Calculate

derivatives

End of case

End.of-step control for

rectification, end-of-phase

conditions, step-size

control

Exit from MARK

via end-of.phase

triggers

End-of.phase print

End of phase




