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PREFACE

Differential geometry has a long history as a field of mathematics
and yet its rigorous foundation in the realm of contemporary
mathematics is relatively new, We have written this book, the
first of the two volumes of the Foundations of Differential Geometry,
with the intention of providing a systematic introduction to
differential geometry which will also serve as a reference book.

Our primary concern was to make it self-contained as much as
possible and to give complete proofs of all standard results in the
foundation. We hope that this purpose has been achieved with
the following arrangements. In Chapter I we have given a brief
survey of differentiable manifolds, Lie groups and fibre bundles.
The readers who are unfamiliar with them may learn the subjects
from the books of Chevalley, Montgomery-Zippin, Pontrjagin,
and Steenrod, listed in the Bibliography, which are our standard
references in Chapter I. We have also included a concise account
of tensor algebras and tensor fields, the central theme of which
is the notion of derivation of the algebra of tensor fields. In the
Appendices, we have given some results from topology, Lie group
theory and others which we need in the main text. With these
preparations, the main text of the book is self-contained.

Chapter II contains the connection theory of Ehresmann and
its later development. Results in this chapter are applied to
linear and affine connections in Chapter II1 and to Riemannian
connections in Chapter IV. Many basic results on normal
coordinates, convex neighborhoods, distance, completeness and
holonomy groups are proved here completely, including the de
Rham decomposition theorem for Riemannian manifolds.

In Chapter V, we introduce the sectional curvature of a
Riemannian manifold and the spaces of constant curvature. A
more complete treatment of properties of Riemannian manifolds
involving sectional curvature depends on calculus of variations
and will be given in Volume II. We discuss flat affine and
Riemannian connections in detail.

In Chapter VI, we first discuss transformations and infinitesimal
transformations which preserve a given linear connection or a
Riemannian metric. We include here various results concerning
Ricci tensor, holonomy and infinitesimal isometries. We then
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treat the extension of local transformations and the so-called
equivalence problem for affine and Riemannian connections.
The results in this chapter are closely related to differential
geometry of homogeneous spaces (in particular, symmetric
spaces) which are planned for Volume II.

In all the chapters, we have tried to familiarize the readers
with various techniques of computations which are currently in
use in differential geometry. These are: (1) classical tensor
calculus with indices; (2) exterior differential calculus of E. Cartan;
and (3) formalism of covariant differentiation VY, which is the
newest among the three. We have also illustrated, as we sce fit,
the methods of using a suitable bundle or working directly in
the base space.

The Notes include some historical facts and supplementary
results pertinent to the main content of the present volume. The
Bibliography at the end contains only those books and papers
which we quote throughout the book.

Theorems, propositions and corollaries are numbered for each
section. For example, in each chapter, say, Chapter 1I, Theorem
3.1is in Section 3. In the rest of the same chapter, it will be referred
to simply as Theorem 3.1. For quotation in subsequent chapters,
it is referred to as Theorem 3.1 of Chapter I1.

We originally planned to write one volume which would include
the content of the present volume as well as the following topics:
submanifolds; variations of the length integral; differential
geometry of complex and Kihler manifolds; differential geometry
of homogeneous spaces; symmetric spaces; characteristic classes.
The considerations of time and space have made it desirable to
divide the book in two volumes. The topics mentioned above will
therefore be included in Volume II.

In concluding the preface, we should like to thank Professor
L. Bers, who invited us to undertake this project, and Inter-
science Publishers, a division of John Wiley and Sons, for their
patience and kind cooperation. We are greatly indebted to Dr.
A.]J. Lohwater, Dr. H. Ozeki, Messrs. A. Howard and E. Ruh for
their kind help which resulted in many improvements of both the
content and the presentation. We also acknowledge the grants of
the National Science Foundation which supported part of the work
included in this book.
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