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ABSTRACT

The possibility of a unitary exploration trip to Mars and Venus having
a total duration of about one year is examined. First of all. the case with no
planetary perturbations is taken into consideration. and a possible ideal solution
is determined. Subsequently, the perturbation due to Mars by passing at a
short distance from it is introduced. and the delay attained thereto in the trip
time is computed. Then, the perturbation due to Venus is examined, and
requirements of flights at a short distance are determined, capable of correcting
the perturbation due to Mars. A numerical example is developed. At last.
the correlations among the proposed astronsutical point of contacts and the
respective astronautical combinations of the thiee planets are discussed. Accord-
ing to calculations of the Brera's observatory, a favourable chance will occurr
on June 1971.°

Part 1

WITHOUT PERTURBATIONS.

While admiring the bold calculators, who have extended the
interplanetary nautics to the whole solar system, T limit myself in
this paper only to our nearest planets.

First of all, I am considering Mars. Its transfer ellipse, cotan-
gential to the two Earth’s and Mars’ orbits, that is calculated
according to the criterion of the minimum propellant consumption,
requires on the average -— according to Clarke — 259 days for
going to, plus 455 days for awaiting on a centrifugal orbit around
Mars the favourable conditions for the return; and other 259 days
for coming back. Hence, we have a total of almost three years,
if considering the time necessary for the departure and arrival
requirements. Stuhlinger’s nuclear space ship requires a total time
of two years.

In a recent paper of mine, where the major axis of the transfer
ellipse was assumed to be along the Earth-Mars line of nodes.
the travel for going to lasted a bit less; without changing, however,
the total endurance in a sensible way.
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I now wish to examine the propellant consumption, calculated
with the known logarithmic relations of the mass ratio, which
usually is taken as a function of the so called characteristic velocity
for the task into consideration, and which may be chosen as a
conventional term of comparison. In the previous case. D.F. Law-
den calculates a characteristic velocity of 17.3 kilometers per
second, by starting from the ground of the Earth.

I prefer to refer myself, on the contrary, to the necesc-~v
specific impulse, expressed in seconds of time, and which is obtau.ed
by dividing the above characteristic velocity for the gravitational
acceleration at the ground, g, as it is common for calculating the
available specific impulse of rocket engines (*).

Thus, we obtain for the transfer journey Earth-Mars and return
the necessary impulse of 1760 seconds, always by starting from the
Earth's ground. Recent calculators compare this impulse to an
available impulse of 400 seconds. This belongs somehow to the
future, nowadays; however, it will be soon reached, even without
using the nuclear energy.

Of the above necessary 1760 seconds, about 580 seconds are
required for establishing the space missile in a satellite orbit around
Mars and for the subsequent approach. In such a way, the mini-
mum amount required only for the going transfer — that is, 1140
seconds — is therefore aggravated by over a half.

I have therefore thought of taking into consideration the
opportunity of a circular reconnaissance travel with no waiting
dwell around the planet; that is, by limiting the purpose to docu-
mentary observations obtained during the flight performed at a
short distance from the planet. And I have drawn the attention
on an interesting astronomical phenomenon occuring during the
travel, and on some requirements concerning the observation (**).

However, the problem of the return takes no advantage from
this. On the contrary, three years are not sufficient to find again
the coincidence with the Earth, unless carrying out manoeuvers
requiring remarkable reserves of propellant.

In such a kind of reconnaissance travel, I have therefore con-
vinced myself to abandon the idea of the cotangential orbit, which
peculiar advantage of minimum consumption becomes illusive,
owing to the burden of provisions necessary for the life of the
crew during the long journey; and to find out, on the contrary, a

(*) Daily paper « Il Tempo», April 4th. 1954.
(**: See nole on page 11.
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way for reducing the endurance to a minimum, for instance only
one year instead of three years.

First of all, I show the generical possibility of this in the ideal
case of no planetary perturbations during the whole trip.

It is obvious that, in order to obtain the evolution time of one
year, that is the same time employed by the Earth, the transfer
orbit is required to have the identical major axis. In fact, Kepler’s
equation gives:

T=Ka?*? (1)

where, T is the lifetime of one evolution, and a is- the semi-major
axis of any orbit having the Sun as one of its foci. K is a constant
which, by expressing T in days and a in megakilometers, equals
about 4.98 (*).

Trasferta TERRA MARTE
nel giro esplorativo di unanno

senza perturbazioni

t*' The calculaiion is apprexizate!y obtu.ned by uti lzine the two upper
scates of a :cl.de rule tha. is the
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If now, for simplicity, we neglect the eccentricity of the
Earth’s orbit, by assuming it to be a circle of radius s, around the
Sun, S, it follows — for the new orbit we are seeking —
that: a=s..

Let us assume, further, as a first approximation, the planet
Mars to revolve along an orbit coplanar with the ecliptic; and
that at point A of Fig. 1 Mars is to be found at the minimum
distance, d, from the Earth’s orbit. It follow: AD=d; DS=s..

At last, assume the point A to be the aphelion of the missile
orbit we want to determine. The center C of such an orbit is
to be distant from point A of the quantity AC=s,. As a result,
we have therefore CS=d.

In such a way, the position of the center is located, to which
corresponds point B, so that BC results equal to the semi-minor
axis, b, of the new orbit. The focal triangle S A B results deter-
minated too; providing the eccentricity of the orbit to be found out

()

e=d/a=d/s,=senc

If the ship, intended to travel along said orbit, starts from
the Earth, according to this scheme, exactly at point B its velocity
is to result in a direction parallel to the axis S A, because B
corresponds to the mid-point, C, of the orbit to be followed.

Simultaneously, such a speed is to result of the same value as
the one which the Earth has in that point, having to meet the

relation (3), with r=s,, p=Newton constant:

3)

However, the velocity of the Earth at point B has a direction
at right angles with the side B S of the focal triangle. Therefore,
it 1s necessary the vector « velocity of the Earth », Vi, to be rotated,
in the plane SB A, of an angle equal to the angle at the apex B
of the focal triangle. This angle has been indicated by the
symbol o.

Therefore, it is necessary to compound vectorially, in the plane
S B A, the velocity Vr with a velocity W having a direction along
the base side of the isosceles triangle V, V; W of Fig. 1: its value
is then equal to

4

W/Vr=2seno2 > f1+e—li—e

as deduced from (2).
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We have thus determined, always schematically, the point
where the Earth is to be found at the moment of the launching, as
well as the value and direction of vector W required for deviating
the velocity from Vr to V,, in the coplanar case taken into conside-
ration. The orbit of the missile will result tangential to the orbit
of the planet at point A corresponding to the aphelion of the orbit
in question; that is, after having travelled a quarter of the orbit.

Fig.2

I have still to consider the possibility of obtaining the impulse
corresponding to W and the requirements thereto. In Fig. 2, the
ship at the moment of departure is already circling. just like a
satellite. in an orbit of radius r, around the Earth. Let R be the

15
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average radius of the Earth. I further assume, for simplicity, the
acceleration required to escape from gravitation and to obtain, at
the end of escape, the residual velocity W to be operated tangen-
tially; that is, at the moment of departure the radial increment
of r, to be technically negligible. Hence, if V, is the pre-existing
velocity of the satellite path, we have Vg*=2 V.? the square of
the escape velocity. Therefore, the launching velocity V; required
to insure the aforesaid residual velocity W, upon completion of
the escape, results from the equation of the work:

Vit= W2 Ve (5)

The increment of velocity necessary to calculate the propellant
consumption is given by: V,—V..

At last, in order to establish the exact direction of vector W,
always in the supposition of the coplanar scheme, it is possibile
to define the launching hyperbola, referred to a stationary Earth,
where W represents the final velocity on the asymptote. Such a

hyperbola is drawn for a short initial arc in figure 2 and the
orientation of the asymptote is compared with the orientation of W,
corresponding to the angle ¢ as deduced from (2).

Having thus determined the parameters of the hyperbola, by
calculating W as a velocity to infinity on the asymptote, we there-
fore obtain:

9,R* a
a— vy, Y=—arcsen ——;
“a. '] Y r{l_'_a‘

where, a is the semi-major axis, ¥ is the asymptote angle to the
axis y’ of the hyperbola. The latter is so oriented as to result in
the asymptote direction to be parallel to the predetermined direc-
tion of vector W with respect to the axis y of the ship orbit.
Therefore. it is necessary to calculate the angie v—e/2, bv which
the axis x° of the hyperbola has to rotate with respect to the
axis x of the ship orbit, in order to determine the exact position
of the launching point X on the satellite orbit. and to deduce the
firing point X,. after having determined from the set of technical
data the duration of the jet firing.
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| tre tempi del viaggio
senza perturbazioni

== Fig.3

This being established, and always as a first approximation,
let us extend also to the planet Venus the conventional concepts
by which its orbit is considered as circular and coplanar with the

" terrestrial orbit.
As a result, we may see at once in Fig. 3 that the orbit of the
} spaceship contacts twice the orbit of Venus: namely, at points J,
/ and J.. Therefore. it is suflicient to change of some degrees, as
specified in the following. the plane of the ship orbit by adequatelv
modifving the direction of velocitv at the point of contact with
Mars to obtain an actual point of contact., where the actual
position of the planet may be presumed. Such a coincidence is
here assumed to be in correspondence with the point of contact J,,
with a determined interval of terrestrial davs from point A, where
the coincidence with Mars has been assumed. On its turn. Mars
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is to be at a determined interval from point B, where the Earth is ’
assumed to be starting off. The compatibility of the above three
conditions will be discussed later on. In Figure 3, the data assumed
for such a scheme and the times elapsing among the three coinci-
dences are traced; that is, 113 terrestrial days from the departure
point B until the point of contact with Mars: other 154 days until
grazing Venus, and at last other 98 days until finding again the
Earth, after one year, at point B of its solar orbit. The final interval
is covered more rapidly, because the ship takes advantage of

-9

its perihelion velocity. i
Fig. 4 shows the astronomical positions of Mars and Venus at
the moment when the Earth is at point B.
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As it may be seen, the above scheme is attractive, and by compa-
rison with the cotangential scheme a highly favourable result is
derived. On that end we calculate the specific impulse necessary for
starting by means of the data inserted into the figure determining
the launching velocity V., assumed as calculated by starting from
the Earth’s ground, as it has been made for the cotangential case,
that is by putting into equation (5) W=11.7; V;=11.2. One finds out
the value V.~ 16.2 kms per second, corresponding to a necessary
impulse of 1650 seconds; that is an impulse_lower than the 1760
seconds indicated by Lawden for the minimum consumption trans-
fer. Moreover, and here is the best prerogative, the travel lasts
one year instead of three years. Th:refore, if we assume in case
of one year an equipment payload of 2 tons, including 3 observers,
by adding as an average other 2 tons for support provisions, at the
departure we will get a total payload of 4 tons. The above calcu-
lation in case of the three-year travel gives 2+6=8 tons; that is,
exactly a double value. The propellant consumption following by
comparison of the specific impulses requested for the two schemes
is therefore, for the one-year travel, less than half of the respective
amount for the three-year travel.

Still a less amount would result if we conceive a similar one-
year scheme for grazing separately upon the planet Venus. In fact,
it would suffice a necessary specific impulse of 1435 seconds.
always conventionally calculated by starting from the Earth's
ground; whilst Lawden gives 2260 seconds for the cotangential
case.

The scheme of a long reconnaissance travel is. however, to be
considered also from the point of view of the observers to remain
into a narrow interior space, where they have also to alternate
during their rest time and the exercises necessary for their health.
Even from this viewpoint the one-year scheme is incomparably
superior than the three-year travel.

I now come to consider the criteria according to which we may
pass from the ideal scheme of first approximation to the executive
scheme. letting aside the simplifying assumption, and keeping the
endurance characteristic of one year only as an order of magnitude.

I mean by this it should be necessary to give up the rigorous
observance of such a duration, because in the problem we have to
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face the conditions overcome in number the variables which we
dispose of. Hence, we have eventually to be content with some
month less or more, and to keep the duration of one year only
for the title, as an attraction to read our paper; (title appeal).
Therefore, the return point on the Earth will be however different
from the departure point B. .

For similar reasons it shall be necessary to give up definitively
the condition for the point of contact with Mars to be at the
minimum distance from the terrestrial orbit. It is very difficult
this may coincide with the proper position the point of contact
with Venus must have. We have therefore to be content with a
position of the point of contact with Mars not very far from the
minimum distance position.

Hence, also the point of contact with Mars will be different
from point A in the scheme of first approximation.

Some obviously approximative positions are then to be Tect-
ified, such as that of the simultanecus presence of the spaceship
and the Earth at point B on the moment of departure. This as-
sumption disagrees with the condition that at point B the spaceship
has reached the escape from the terrestrial gravity. Practically,
in our previous studies (*) we have been of the opinion to assume
as technically acceptable a distance of the spaceship from the
Earth equal to 407 terrestrial radii, at which distance the attraction
of the planet has become the hundredth part of the Sun’s attraction.
In other terms, the departing curve of the spaceship from the
Earth is to be calculated by taking into consideration the Sun’s
attraction, and therefore it is not a hyperbola, as we have assumed
as a first approximation. Such a curve is asymptotic with the
elliptical orbit we want to determine, rather than with the asym-
ptote of the first approximation hyperbola.

At last, also the point of contact with Venus will result
different from the point marked in the first approximation scheme.

Therefore, definitively, by giving up the convenient assumption
of coplanarity, the effective positions of the Earth and the planets
may be represented as in figure 5, which is only a schematic plot.

t*; Formulazioni di Meccanica Astronautica. Proceedings Accademia Lincei
Julv-August 1855.
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Posizione spaziale dei tre pianeti per
l'angolazione dei piani orbitali

The plane of the sheet, assumed as transparent. coincides with
the plane of the eccliptic and contains the Sun S and two positions
of the Earth, that is: B, point of departure; and T, point of arrival.
Underneath the sheet, we see the point M of Mars at a negative
altitude Z,= —6.40 megakilometers: whilst the point V of Venus
remains above the sheet at a positive altitude Z,=+1.96 mega-
kilometers. The above two altitudes are computed by estimating
same on the basis of the distances of points'M and V from the
respective lines of nodes.

As resulting from the figure, the orbital plane of the spaceship
will vary three times. At the departure, that is, the ship will
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have to abandon the plane of the ecliptic in order to follow the
plane of the three points BS M leading it to the effective point
of contact with Mars. Once arrived here, it should undergo an
angular correction of the velocity vector leading it to follow the
new plane M SV, crossing Venus. At last, here it should still
correct the angle of the velocity vector until determining the new
plane VST, which contains the point T of final contact with the
Earth, in general different from the departure point B.

The generic examination of this scheme makes us believe that
the first correction will be introduced into the very problem of
departure, by suitably deviating of some degree the velocity vector
V, from the plane of the ecliptic. The second correction is in
general of a slight nature and could also be operated with the
manoeuvre propellant existing on board the spaceship.

This is not the case for the third correction, which could be
of a remarkable nature if we do not keep it into consideration in
the predisposed generical laying out of the points of contact with
respect to the lines of nodes.

It is useful to point out how such a laying out has a funda-
mental importance in all problems of interplanetary transfer.
Thus, for instance, in the ellipses of cotangential transfer or,
anyway, in the ellipses where the point of arrival on the planet
is diametrically opposed to the departure point from the Earth,
it may be observed that, when the above diametrical position is
predisposed on the line of nodes (*). the orbital plane of the
spaceship is indeterminate and may be chosen according to conve-
nience. If, on the other hand, the diametrical position should be
at right angles with the line of nodes, the plane of the three
points earth-sun-planet should rotate exactly 90° with respect to
the plane of the ecliptic!

This points out in our case the necessity for a presumable
laying out of the programming or for a final variation of same.
which lead to acceptable values for the three corrections of the
flight plane of the spaceship.

The more so as the corrections of the flight plane are then
geometrically connected with the corrections in the flight plane.

(*' As I have assumed in ithe paper cited in the previous note.
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which are necessarily introduced by the planetary perturbations,
so far deliberately not considered.

As a matter of fact, the perturbations caused by the contact
with the two planets, subject of the programmed exploration trip,
are unavoidable. To avoid same it would mean to pass at least at
a distance of four hundred radii: and this would frustrate the
exploration scope of the trip.

Passing at a short distance from each planet. between zero
and some radius, is on the contrary intimately connected with
the task of the spaceship, which will be equipped with a telescope
of moderate aperture and will have to obtain a magnifying power
of images such as to reveal and distinguish the natural accidenta-
lities of the planet from artificial construction, marking the pre-
sence of intelligent baings, in the event of any being observed. It
will be necessary to approach close also to Venus in order to be
able of probing the riddle which is concealed by her thick
atmosphere. :

On the other hand, it is a great fortune for astronautics that
matters stand so, because perturbations can constitute for the pilot
exceptional chances of free manoeuvres, that is without consum-
ption of propellant; as F. Lawden has sharply illustrated and
codified (*), in case of isolated perturbations.

In our executive scheme we consider on the contrary two
successive perturbations, and it is logical to think of the second
one in order to compensate the first one for the best, thus achieving
definitively an acceptable point of contact with the Earth. The
contact with Venus, which in our first approximation scheme is
optional, becomes hence an integral part of the executive scheme.

Part II

WITH PERTUTRFATIONS.

The perturbations which act upon the crbit of a spaceship
due to the contact with a planet depend first of all by the relative
velocity the spaceship overtakes the planet with, or by which it
is overtaken by the planet; and, moreover, by the minimum
distance at which the spaceship is flying above the ground of the

(*) F. Lawpen: « Perturbation manoeuvres ». BIS Nov. 1954
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planet, as well as by the orientation of the plane of such a flight
with respect to the orbital plane.

The relative velocity of flight is given, on its turn, by the
vectorial difference between the velocity of the spaceship and
the velocity of the planet. Therefore, it is not only dependent
by their numerical value, but also by the angle included between
the two velocities. ;

In laying out the problem, it is however convenient as a first
examination to neglect the orientation of the plane of flight with
respect to the orbital plane: that is, to take the above two velocities
as being both on the orbital plane. In such a case the perturbation
acts only in the orbital plane, and remains — ceteris paribus —
as function of only one variable. On the contrary, in case the
plane of flight with respect to the orbital plane has an orientation
different than zero, the perturbation acts simultaneously upon the
Pplane and on its orientation, thus becoming a function of two
variables.

= This being established, we shall call V, the own velocity of
spaceship, and Vy, Vy the velocity of the planet. respectively Mars
and Venus. We shall indicate by o the angle included, and by
u, the vector of relative velocity. All of the above three velocities
lie cn the orbital planes of the respective terns. However, due
to the smallness of the angles with respect to the ecliptic, and
due to the purpose of demonstration which we propose ourselves,
we will assume said velocities to be, as said before, all on the
plane of the sheet.

Moreover, the case for Venus is different than the case for
Mars, because for the first at the moment of the contact the
velocity of the spaceship is higher than the velocity of the planet,
while in the case of Mars it is lower. Hence, u,, in the case of
Venus, has*a positive sign, and it is therefore a grazing velocity
in an aeronautical sense, that is the spaceship goes towards the
planet and overtakes it. On the contrary, in the case of Mars,
it is the planet which overtakes the spaceship, by coming upon
the latter from the side opposite to the motion: because the
Telative velocity u, has a negative sign.

During the overtaking period, then. in whatever direction, the
orbit of the spaceship under the attraction of the planel undergoes
an inflection and a variation of its relative velocity, which. with
respect to the planet assumed as stationary. results into a coplanar
approaching hyperbola similar to that already considered in Fig. 2
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| due tipi di passaggio su MARTE

of this paper. The relative velocity u. is therefore ideally the
velocity to infinity on the inlet asymptote of this hyperbola, while
on the outlet asymptote it results to have. at infinity. the same
value of the inlet deviated by the angle 2¢ between the asymp-
totes. At mid-way, it reaches a minimum approach. d, to the

ground of the planet.
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Practically, to the concept of infinity at inlet and outlet it
will be possible to substitute, so long as a greater rigour is not
necessary, the concept of a suitable finite distance from the center
of the planet, as it has been outlined in the first part of this
paper. That is, a distance at which it is possible to assume as
conventionally negligible the attraction of the planet, interesting
the relative motion, with respect to the Sun’s attraction, which
prevails over the configuration of the orbit, considered like absolute
motion.

We have elsewhere proposed for the Earth a distance of 407
ierrestrial radii, which reduces the above ratio to one hundredth.
It will be almost equal for Venus, and remarkably lower for Mars,
tnat is about 320 Martian radii.

Let us sketch with such criteria in Fig. 6, on the left, the
case of contact with Mars occurring in one of the two points I,
or I,, different from A, for which let « be the angle included
between the velocity Vy of the planet and the velocity V, of the
spaceship.

We shall call the above contact as «secant», in order to
distinguish it from the contact at A, which will be denoted as
« tangent », and which has been not taken into consideration in
the following studyv because it has proved unfavourable.

The two velocities Vy and V, will be calculated from the
known equations of celestial mechanics
2u n

Vu® = - ———; Vil = S ax’ (6)

where p is the gravitational constant of the Sun; Sy and ay the
radius vector and the semi-major axis of Mars; a, the semi-major
axis of the spaceship orbit.

On the right diagram of the figure, Mars is now presented
into the two alternate positions I, or 1., to a scale more than 2000
tunes greater of the scale of the orbits. To the above diagram
we refer the relative velocity u,, which is deduced from the
velocity triangle, of which we know two sides and the angle
included. It remains to establish the minimum approach, d. in
order to compute the hyperbola axis a and b, and the rotation 2V
cf the asymptotes. The own velocity u. is to be settled at the
predetermined conventional distance. However, in the figure it
1s practically carried at a distance more suitable for the drawing
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Meanwhile, if R is the radius of the planet, we shall have, as
it is known

a a
tang y = = ; seny = RTE:__a . (?)

where a and b are the two axis of the hyperbola, d is the minimum
approach of the flight, and 2V is the angle by which the outlet
asymptote rotates with respect to the inlet asymptote.

Moreover, if g, is the gravitation at the ground of the planet,

we shall have

L mE_ Vel . (8)

where Vi represents the escape velocity. We get the generic
calculation equation

V.2
e = —a ; ©)

vz‘~'+2(__ 1+g Juot
which will be used hereinafter in order to evaluate the relation-
ship between the rotation 2¢ of the asymptote and the minimum
approach d.

Anyway, we note at once how equation (9) is not useful for
the definition of the piloting manoeuvre intended to obtain the
predetermined minimum approach d, owing to the fact that the
pilot cannot previously identify d. He can only identify, through
the assistance of a suitable optical instrumentation, the yaw b of
his relative course from the center of the planet, so to obtain in
time that it corresponds with the inlet asymptote of the hyperbola
at the conventionally defined moment.

To such a purpose, we will determine from (7) the equation

of the ratio

LWL P L Ny (10)

denoting the yaw of the inlet asymptote necessary to cause the
minimum approach d.

Thus. for instance, in the case represented in figure 6 for
the two kinds of contact with Mars, for which we have V=5 kilc-
meters per second. if assuming u.=6.78 kms per second. and if

d

desiring to get R =1, it is necessary to have a yaw of the inlet
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asymptote rt; =2.26. Similarly, to obtain d/R=zero it is necessary

to have a yaw of the asymptote %:1'59_

Let us now compare the two kinds represented in figure 6.
First of all, we note that, as already mentioned, the spaceship
in that case is going before the planet towards the point of contact
along its own motion, and it may be in every way orientated at
the moment of starting the approaching manoeuvre. Anyway, it
is obvious that, when that moment has arrived, the pilot will first
of all point against Mars the optical axis of his sight, facing the
target, as it is customary to say in artillery: and the more so as
in this case the target is coming upon him. If the own velocity
of the spaceship was correct and sighted, the relative velocity of
the pilot will also be correct and sighted; which will thus be
automatically referred to the planet, assumed stationary. The
correct yaw of the relative course could be checked by means of
suitable optical collimation instruments.

The unavoidable errors from what has been foreseen could
be corrected in time by means of the double-impulse method,
through the propellant reserve and the jet devices intended for
manoeuvring purposes. Summing up, the pilot will enter the
hyperbola on the predetermined asymptote and will have the
feeling of going and overtaking the planet on his right or his
left-hand, according to what has been prescribed, like on an invi-
sible motorcar racecourse.

This being established, let us revert to fig. 6, where the
overtaking subjectively occurs on the right-hand, since the orbit
of the spaceship has been assumed to be inside the orbit of Mars,
on the hemisphere lighted by the Sun.

We note at once how in both cases the vector V, of the own
velocity at the hyperbola inlet undergoes an angular deflection £
in the same sense, shifting to V’,, in correspondence with the
rotation 2¢ undergone by the relative velocity u.. However, the
value of said own velocity differs in a remarkable way for the
two cases. In fact. in the case I, the value of V, increases when
shifting to V’,: whilst it decreases in the case I..

This leads immediately t{o the exclusion of case I,. since the
increase in velocity causes an increment of the major axis cf the
perturbed orbit, as it may be calculated by the second eguation
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of (6) by introducing V', in place of V,. From such an increment,
a remarkable increase of the periodic time T of the spaceship is
accrued, which is given with a rough approximation by the

equation
5T = ax¥s; : (11)

where T is computed in terrestrial days and a in Mkms. As a
result, a noticeable delay arises in the duration of the travel.

Therefore, we shall choose hereinafter the case corresponding
to the point 1., where the periodic time is decreased.

The new angle of the own velocity V', which we have called 3
with respect to V,, introduces then into the perturbation caused
by Mars a rotation ¢ of the orbital major axis of the spaceship,
which results in an anticlockwise sense. namely in the same sense
where the spaceship orbits. It follows a remarkable deviation of
its points of contact with the orbit of Venus. The way for comput-
ing the rotation ¢ is geometrically easy, but analitically it is some-
what difficult. We shall briefly indicate it with reference to
Mars (Fig. 8). i

First of all, the position of the planet is to be determined.
which we call here M, in correspondence with the point of contact,
for instance I.. Then, its solar radius vector S M is to be defined,
and the velocity of the planet Vy and its direction are calculated.
Being then known the center of the spaceship’s orbit, and hence
its second focus S,, the bisecting line of the focal angle SM S,
is plotted, that is the perpendicular n to the own velocity V, of
the spaceship at the point M of contact. We thus obtain the angle «
between Vy and V,, giving the relative velocity u, at the moment
of the contact on the hyperbola inlet asymptote. Having then fixed
the minimum approach d to be realized, the corresponding rotation
2¢ is calculated as per Fig. 8. This yields the deviation B of
the own velocity from V, to V’.. Such a deviation is carried
starting from the previous perpendicular n in order to obtain
the new perpendicular n’. which is the bisecting line of the new
focal angle SMS,”. At last. the new semi-major axis a’ of the
perturbed orbit is calculated. thus determining the new radius
vector MS,"=2a"—MS. completing the focal triangle SMS,”,
and hence giving finally the wanted rotation ¢ of the major axis
of the perturbed orbit, and therefore its angle 4 with respect to
the perihelion axis of Mars.

In Fig. 8, the triangulation has been plotted for the positien M
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| due tipi di passaggio su VENERE

Fig.7

by which Mars has overstepped of 20 megakilometers its own
perihelion. If the spaceship follows a grazing fiight. that is
d=0. the angle ® of the major axis is 13°30". For d=1. by which
we have ®=7°30", the triangulation has not been plotted.

We could now proceed further in seftling the perturbation of
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Mars on the remaining of the travel, assumed free from other
perturbations. However, we prefer first to take into consideration
the requirements of the perturbation of Venus. to point out its
different kind, with respect to Mars.

Therefore, we refer to figure 7, where the two orbits inter-
secting at the two generic points J, and J, are similarly shown
at the right-hand. The two points J, and J, are assumed, for
simplicity, to be symmetrical with respect to the major axis of
Mars; whilst in the definitive reality, after the perturbation of
the latter, they will be symmetrical with respect to the new major
axis of the perturbed orbit.

We have then plotted, at the left-hand and in the middle, to
a scale more than 2000 times greater of the scale of the orbits.
the planet Venus in way of the two alternate points of contact
J, and J,, which therefore do not appear in an evident correlation
with the points marked on the right-hand orbit. This for typo-
graphic reasons and to avoid the superimposition of the two
triangles. For the same reasons, we have further changed the
scale of velocities, which helps by sight the typical comparison
between this case and the case for Mars. Here, in fact, not only
the spaceship is faster than the planet, but the two own velocities
Vy and V, are remarkably less sloping with respect to the orbital
major axis of the spaceship, so that we may say the ship to fly
over the planet by side, that is on an asvmptote almost directed
towards the Sun. Once arrived in the middle of the hyperbola,
the spaceship in its relative motion passes perceptibly from the
sun-lit hemisphere to the shadow hemisphere, or vice-versa.

From the above, we derive the existence of two requirements
of flight for each of the points J, and J.. which may then be
examined, from the corrective point of view of Mars’ perturbation,
without prejudice on the exploration purpose of the trip, which
on the contrary may result optically favoured from a better
visibility through the atmosphere of Venus.

Of the four manoeuvring possibilities resulting from this
remark. we have however chosen in the figure the two chances
promising a decrease in the value of the own velocity, and we
have plotted the two corresponding triangles and the two corres-
ponding hyperbolas, which ,assuming to face the planet., must
lead the pilot to overtake it subjectivelv on the right-hand for
point J, and on the left-hand for point J..

The figure thus confirms for both cases and for a given
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minimum approach, d, a remarkable decrease in the own velocity
of the spaceship when passing from V, to V', and a simultaneous
deviation B in its direction.

The rotation 2¢ of the relative velocity u,., from the inlet
asymptote to the outlet asymptote. is also here computed by using
the already cited equation (9), putting for V; the value of the
escape velocity from the ground of Venus instead than from the
ground of Mars.

Therefore, both cases are interesting. Anyway, for the moment
we have had to limit ourselves and to consider only the case of
the contact defined by point J,, and s3ecified in the middle of
figure 7.

The perturbation produced on the orbit of the spaceship by
the approached contact with Mars is specified in Fig. 8 for the
case of the grazing flight d=0. It will be also indicated, but
without specification, for the case d=R. The perturbation of
Venus is assumed null.

Therefore, let us assume the point M of contact., projected
upon the ecliptic, at 20 megakilometers from the Martian peri-
helion, and iet us take M S=206.9 Mkms, putting the semi-major
axis of Mars=228 Mkms, and the one of the Earth=149.5 Mkms.
Let us evaluate consequently the time t, which the spaceship takes
to cover the arc of ellipse B M, having as semi-axis a=149.5 and
b=137.8, calculating the sector () delimited ketween the arc BM
and the Sun, and introducing it into equation (12)

{ r

TR (12
where T is the periodic time. equal to the time of the Earth,
assigned to the ellipse of axis a and b. It is to be remarked that,
being the two ratios dimensionless, it will be possible to a fair
accuracy to measure () by means of a suitable planimeter and to
measure a and b to the scale of the drawing.

In such a way, and by checking analitically the result when
necessary. we have determined the times which will be quoted
hereinafter, getting meanwhile 1=12542 for T=365 terrestrial
days.

To evaluate now the successive time t° necessary to cover the
remaining of the orbit from point M to point B" of contact with
N

the Earth’s orbit after the perturbation caused by Mars, bu

without any perturbation from Venus, assumed far enough from
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the point of contact between her orbit and the orbit of the space-
ship, we shall proceed as follows. First of all, we shall calculate
at point M the velocity of Mars Vy=26.46, and the velocity of the
spaceship V,=19.87, as well as the angle & between the two
velocities, getting the relative velocity u,=6.78. From the latter,
putting as escape velocity from the ground of Mars Vy=5 kms
per second, by means of equation (9) we obtain the value of
20 =24°42". We shall then calculate the value of the deviated
owlxn velocity V’,, and from the latter by means of equation (6)
the new values a* and b" of the perturbed orbit, and the ensuing
angle ¢ of the deviated major axis. Computing at last the new
sector {2°, having the Sun as its apex and the perturbed trajectory
M B” as its arc, represented by long dashes and corresponding to
d=0, we have the new additional time t°.

We obtain, in round figures
a*=149.8 b*=138 1*=268;

so that we get the total time t+4t*=393.4, whilst the Earth to be
again after one revolution at point B” requires only t,=378.7 days.
Therefore, the spaceship will arrive at point B” of contact with
the terrestrial orbit with a delay of 14.7 days. Such a delay could
be assumed as a measure for the perturbation of Mars with d=0.

For d=R=radius of Mars, we similarly get
t°=254.1; t+1"=379.5; tr=374.4

and the measure of perturbation is reduced to 5.1 days of delay,
thus lacking also in this case the contact with the Earth. Only
for d=oc, that is without perturbations neither from Mars nor
from Venus, the contact with the departure planet will be allowed
to happen.

We now show how the perturbation of Mars may be corrected
by the perturbation of Venus, and we point out the requirements
thereto.

As it was shown in Fig. 7 and as it may be seen in Fig. 9,
where the maximum perturbation of Mars is taken into conside-
ration. for d=0, the contact of the spaceship with the trajectory
of Venus, which results displaced by the perturbation of Mars as
mayv be noted in the previous figure 8. appears as a secant contact.
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having a large angle ¢. For the case d=0, by means of equation (6)
we calculate the velocity of Venus V;=35.04, and the velocity ot
the spaceship at the point of contact V,=39.63. The relative
velocity u,=11.8 is then deduced, which is remarkably oriented
into the direction of the Sun.

To see now if a point of contact. X, exists between the Earth’s
orbit and the orbit of the spaceship perturbed by Mars and then
corrected by Venus, coinciding with the arrival of the Earth at
the same point, we have tentatively proceeded into the two figures
for a Martian perturbation corresponding respectively to d=zero
and d=R. We will specify Fig. 9, assuming the flight over Venus
to occur on the right-hand as described in the case J, of Fig. 7.
Each trial presumes an arbitrary angle (2v),, of which the corres-
ponding minimum approach d, is then defined.

We then calculate in Fig. 9, from the trigonometric relations
to be deduced from the velocity polygon. the value of the velocity
perturbed by the flight on the right-hand V,=36.8, and from this
the axis of the new orbit a’,=120.4. From the point of contact V,
resulting from the illustration of Fig. 8 for d=0, we then plot
the perpendicular n;,” to the velocity V', deviated of B; from the
pre-existing value V,. We have to take into account how said
perpendicular bisects the angle between the two focal radii out-
going from point V, while their arithmetical sum must be equal
to 2a,". From this we get the second focus of the spaceship orbital
ellipse, denoted by number 1, which determines the orientation
cf the new major axis, having an angle ©#=41°30" from the
perihelion axis of Mars, as per figure.

We may thus define the new path of the spaceship between
the point of contact with Venus and the point of contact with the
Earth’s orbit, denoted by number 1, and we may deduce by means
of equation (12) a duration T,=264.2 terrestrial days. Evaluating
then the area (), of the concave sector VS1, we obtain the
additional time t,, required by the spaceship in such a new path
for going from V to 1, from the relation

L. T (13)
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We obtain t;,=129.6, whiih must be added to the 296.4 required
for the distance Earth-Mars-Venus, and previously calculated.
Summing up, we thus get a total time of 426 days, whilst the time
of the Earth is evaluated, until point 1, to be 4429 days. The
spaceship hence meets the terrestrial orbit at point 1 with an
advance of 16.9 terrestrial days.

This shows first of all the corrective power of the perturbation
of Venus. since the rotation of the asymptotes of 16 deg, taken as
an example, corresponds tc a minimum approach to the surface
of the planet dy=14 R,, calculated by means of equation (4),
where for Vi the value of 104 kms per second has been put.
Therefore, an ample margin exists for additional corrections.

Moreover, the remarkable advance of 16.9 days, compared with
the identical delay caused by the only perturbation of Mars for
d=0. not corrected by Venus and carried to point 4 of figure 9,
cocrresponding to point B” of Fig. 8, confirms at first sight the
existence at mid-way or thereabout between points 1 and 4 of the
wanted point X of coincidence between spaceship and Earth.

The two successive trials, denoted by numbers 2 and 3, for
values of (2¢). equal to 12" deg and 8" deg, allow to locate by
means of a graph and to a rough approximation the position of X.
To this position corresponds, always for d=0 on Mars, the minimum
approach d,=4 R, on Venus. The duration of the whole trip
results to be about thirteen months and a half.

Fig. 10 presents the similar research for a neutral point X in
the case of the minimum approach d=R on Mars. Only the result
is indicated. placing in the graph the solutions obtained from the
three trials 1, 2, 3 and from the position 4, where only the
perturbation of Mars is operating.

We thus get the position of X. plotted in the figure, to which
a corrective minimum approach on Venus d,=71 R, and a duration
of the whole trip equal to about twelve months and a half are
corresponding.
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Summing up, we have outlined in this paper the theoretical
possibility of an exploration trip Earth-Mars-Venus-Earth having
a duration of about one year, showing how the perturbation caused
by the approach to Mars may be neutralized, to the purpose cf the
final contact with the Earth, by ihe perturbation caused from the
approach to Venus.

Obviuosly, the research is to be considered like a laying out
of the problem and not like a solution. Too many questions are
still to be examined in order to make a positive possibility.

First of all, the existence and the recurrence of a favourable
astronomical chance of the three planets, as required by the
proposed astronautical contacts, are to be verified. From such a
chance, a new check of the astronautical calculation will be origi-
nated, and from this a new astronomical investigation, until the
most acceptable solution is reached.

Moreover, it will be necessary to verify every chance from
the viewpoint of the angular corrections of the orbital plane for
each point of contact. These corrections have been so far assumed
as being of a slight nature, consistent with the corrective availa-
bility of the very perturbations, whilst some of the necessary
corrections could result to be implicitly excessive if compared with
the means which we dispose of in order to obtain them.

It is further necessary to realize a flight instrumentation
suitable for preparing in time to the due accuracy the planetary
contacts, as well as a manoeuvring instrumentation able of locating
and obtaining the correct asymptote inlets.

At last, it is not possible to neglect the cases we have set
aside without examination, some of which lets foresee solutions
even more favourable than those discussed. The same initial
laying out of an orbit of the spaceship having its semi-major axis
equal to the mean terrestrial radius should be dived deep in our
search for the best.

Finally, I have the pleasure of pointing out the effective
assistance given by the main Chief Draughtsman Spartaco Migani
for having faced and carried out with passion and competence all
the graphical and analytical calculations of this research as well
as the illustrative drawings: and of expressing my gratitude tc
Capt. Glauco Partel for his valuable co-operation and for having
accepted to translate into English language the present paper,
filled up with peculiar modes of speech of personal character.
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