


JET PROPULSION LABORATORY California Institute of Technology • 4800 Oak Grove Drive, Pasadena, California

April 16, 1962

Mr. Michael Minovich 580 Gayley Avenue Zone 24 Los Angeles, California

Dear Mike:

As you may recall in our last conversation, we promised to send you the necessary formulas for converting your output vectors near the planet to the parameters $\overline{b} \cdot \overline{T}^1$ and $\overline{b} \cdot \overline{R}^1$. These two quantities are absolutely necessary in checking the accuracy of your conic program, and are defined below.

Michael Minovich

-2-

April 16, 1962

$$\overline{b} = (a + R_{ca}) \overline{E}^{1} - a \overline{S}^{1}$$

where,

$$a = \frac{\mathcal{U}_{2}}{V_{\infty}}$$

= gravitational constant of target

 V_{∞} = hyperbolic excess speed

R_{ca} = distance of closest approach from center of planet

a = major-semi axis of hyperbola

 \overline{b} = impact parameter, directed from center of planet perpendicular to incoming asymptote (\overline{S}^{1})

51 = a unit vector having the direction of the incoming asymptote or hyperbolic excess velocity

 \overline{E}^1 = a unit vector directed from center of planet toward closest approach

pl = unit vector normal to ecliptic or Earth's equatorial plane (up), whichever is the most convenient

$$\overline{T}^{1} = \frac{\overline{S}^{1} \times \overline{p}^{1}}{\left| \overline{S}^{1} \times \overline{p}^{1} \right|}$$

$$\overline{\mathbb{R}}^1 = \overline{\mathbb{S}}^1 \times \overline{\mathbb{T}}^1$$

The quantities needed are $\overline{b}\cdot\overline{T}^1$ and $\overline{b}\cdot\overline{R}^1$, the projection of the impact parameter (\overline{b}) onto the unit vectors \overline{T}^1 and \overline{R}^1 respectively.

Your friend,

JET PROPULSION LABORATORY

Sere Bollman

Gene Bollman

P.S. If there are any questions, don't hesitate to call me at SY 0-6811, Ext. 1316.