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ABSTRACT

Lambert’s equations are stated and discussed for elliptical, hyper-
bolic, and parabolic trajectories. Numerical results are obtained for
Earth-to-Venus and Earth-to-Mars free-flight transfers, with the
assumptions of the two-body (Sun-spacecraft) approximation and
constant planetary radii. Straightforward methods, to determine which
forms of Lambert’s equations are valid for a few specific problems,
are presented.

I. INTRODUCTION

Suppose a body under the influence of a central gravi-  r, are known, ¢ can be related to the heliocentric transfer
tational force is observed to travel from a point P, on its angle 8 by the law of cosines:
conic trajectory, to a point P, in a time T. The time of
flight is related to other variables by Lambert’s theorem,
which states:

=l tel—Trricosd (2)

The transfer time of a body moving between two
points on a conic trajectory is a function only of the
sum of the distances of the two points from the origin
of force, the linear distance between the points, and
the semimajor axis of the conic.

In mathematical terminology,
T=T(r, + r.c,a) (1)

where r,, r2, and ¢ are labeled in Fig. 1 and a is the semi-
major axis.

In most problems of interplanetary transfer, a space
mission is specified, that is, r, and r. are known. If r, and Fig. 1. Geometry for Lambert's theorem
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Thus, Lambert’s theorem can be stated for a specific
mission by

- T=T(a0) (3)

Lambert’s theorem can be expressed, of course, as a
functional equation, the form of which depends upon the
energy per unit mass of the body in motion and certain
geometrical conditions. The energy/mass (E) of the body
is given by

E =

L i (4)

o] -
= |®

where

r = the distance from the origin of the central force
to the body

V = the velocity of the body at r

and

p = the gravitational constant of the central force

The forms of Lambert’s equations are first determined
by whether

E <0  (elliptical conic)
or

E >0  (hyperbolic conic)
or

E =0  (parabolic conic)

If the body in question is considered to be a spacecraft
launched from the point P, in the solar system, the three
energy conditions can be expressed alternatively as the
launch conditions

i)
Vi< f

o o
Vi> 4
v.= =

T

where V, is the heliocentric velocity at r,.

Il. LAMBERT'S EQUATIONS FOR ELLIPTICAL TRAJECTORIES

For a spacecraft launched from P, on an elliptical tra-
jectory to P., the launch condition is stated as

If the magnitudes of V, and r, are known, the semimajor
axis a of the conic can be obtained from

E=-2£ ®)

The two possible ellipses that exist for given values of
ri, T2, 8, and a are given in Fig. 2. The proof that no
more than two ellipses exist is given in Appendix A.
Since clockwise and counterclockwise transfers exist on
both ellipses A and B, four different flight times and thus
four different forms of Lambert’s equations exist for
given ry, r,, a, and 6, where 0 < 6 < 2 .

The four different forms of Lambert’s equations may
be established by considering the area enclosed by the

Fig. 2. Geometry of elliptical orbits
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Fig. 3. The chord-flight path area

chord ¢ and the flight path of the moving body. (See
Fig. 3.)

1.

5]

For the counterclockwise trajectory along A, the
chord-flight path area shades neither F, the origin of
the central force, nor F’, the vacant focus of the
ellipse. For this trajectory and all elliptical trajec-
tories where the area shades neither focus, Lambert’s
equation has the form

T(a,6) =T= _2% [(a— sina) — (8 — sinf)]
(6)

where P is the period of the ellipse and is given by

P=2x [%
I

cos::zl—«z- 0<La<)
and
cosg=1->"—S (0<B<)

The semiperimeter of the triangle FP,P, is given by

s=r1+rz+c
]

where

c=\ri+ri—2rr,cosb

[For a derivation of Eq. (6), sec Ref. 1]

. For the clockwise trajectory along B, the chord-

flight path area shades only F, the origin of the cen-

tral force. For all such elliptical trajectories, Lam-
bert’s equation has the form

T(a,6)=P—T = EPE; [(«— sina) + (8 —sinf)]
(7)

3. For the counterclockwise trajectory along B, the
chord-flight path area shades only I/, the vacant
focus of the ellipse. For all such trajectories, Lam-
bert’s equation has the form

T(a,0)=T=P— 2—1'; [(«—sina) + (8 — sin@)]
(8)

4. For the clockwise trajectory along A, the chord-
flight path area shades both foci, F and F|. For
all such trajectories, Lambert’s equation has the
form

T(a,0)=P—T=P— - [(«—sina) = (8~ sing)]
(9)

The question of whether I is shaded or unshaded is
equivalent to whether # < « or 8 > . The question of
whether F’ is shaded or unshaded is equivalent to whether
¢ < mwor & > = (See IMig. 3.) Thus the correct form of
Lambert’s equation for elliptical trajectories is determined
from a knowledge of 8 and #’, as follows:

T(a,0)=T O< ¢ <)
T(a,0) =T vl
T(@8)=P—-T (@>n8 <)

T@0)=P—T (§>m6 >

There are two special cases that should be noted:

1. When the origin of the central force lies on the
chord ¢, § = =; then

ntrn=c

In this case, since

s=r+r
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then
s—c=0 Py
SO
B=0

Hence

Te=(P—T)s (F unshaded) (10)
and

Te=(P—T)x (F shaded) (11) %
and ellipses A and B become identical.

2. When the vacant focus of the transfer ellipse lies on
the Chord G; g = = Since the sum Of the distances Fig. 4, Geomefry of @ minimum semimuior axis eilipse
from a point on an ellipse to the two foci is a constant,

naval 0.5, away besennfroms Ty, & it For given values of r,, ., and 6, (r; + r}) has a mini-

ntr] =2a mum value when F’ lies on ¢. Hence the minimum
value that a can have is given by

rn+r, =2a
and -
am =
v, +r.=¢ 2
Therefore,
ek iosts +nte._» If a,, is substituted into the T and T equations, Eq. (6)
- 4 TR and (8), then, for § < =,
T(am) =T =5: =P v—arccos[1-2"C%)~ [1-[1-2=F : (12)
" ™ 2 s/2 s/2 .
and, for 4 > =,
P-Tha=@P-Th=P—-FL. (13)
ll. LAMBERT'S EQUATIONS FOR HYPERBOLIC TRAJECTORIES
For a spacecraft launched from P, on a hyperbolic The two possible hyperbolic trajectories that exist for
trajectory to P,, the launch condition is stated as given values of ry, r,, 6, and a are given in Fig. 5. The
proof that two and only two hyperbolas exist is given in
Z» Appendix B
Vi > _r__. Appendix bB.
For given values of V, and r,, the value of a can be Two different flight times and thus two different forms
determined. Since E is positive, a is negative. of Lambert’s equations exist in the hyperbolic case.
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where
coshe=1-23
- a
'\.\ _
N coshg=1—-2"F
o—F 9
e 2. For hyperbola B, the chord-flight path area shades
s F, and # > = Lambert’s equation for this type of
hyperbola is
e I i . =
Fig. 5. Geometry of hyperbolic orbits A n [(sinha = a) + (sinh 8 — )] (6> )

(15)

1. For hyperbola A, the chord—flight path area does In the case where § = =, hyperbolas A and B become iden-
not shade F,, and § < ». Lambert’s equation for this tical, so that
type of hyperbola has the form s=0and B=0

and Lambert’s equation reduces to
—_—3
=, /—f— [(sinha — a) — (sinhg — B)] (I <)

— — 3
14) T,=T, = =% (sinha — ) (16)
In

IV. LAMBERT'S EQUATIONS FOR PARABOLIC TRAJECTORIES

For a spacecraft launched from P, on a parabolic tra-
jectory to P,, the launch condition is stated as

v,=_ 2
T

Since E = 0, a is infinite.

The two parabolic trajectories that exist for given values
of r,, 2, and 6 are given in Fig. 6. Parabolas A and B can
be considered the limiting case of ellipses A and B or
hyperbolas A and B as a — « or a — — , respectively.
Likewise, Lambert’s equations for the parabolic case can

Fig. 6. Geometry of paraholic orbits
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be derived, using L'Hopital's rule, from either the ellip-
tical or hyperbolic forms:

ford < ™,

; ' 1 [2 :
Te=limT=lmT = =, [—[s°— (s — c)¥*
aywo ay-n 3 I [ ]
(F unshaded) (17)

forg > =,
T.=lim@~-T)=lmT
arw ap-x

= ;T \/-it [/ + (s — )] (F shaded) ~ (18)

and, for 8 = =,

Tw? = ’fw#

Il

8 g
R (19)

V. RESULTS

Lambert’s equations have been programmed for the
IBM 1620 computer at the Jet Propulsion Laboratory for
computation of Earth-Venus and Earth-Mars trajectories.
The following conditions were assumed:

1. The spacecraft moves from Earth, P,, to Venus or
Mars, P., while under the gravitational influence of
the Sun only.

2. Planetary orbits are circular.

3. Constants for evaluating Lambert’s equations:

., = lau
r: = 0.723332 au (Venus)

= 1.523691 au (Mars)

= 99 L au
p = 2.959122083 X 10 Jay

Figures 7 through 10 are plots of T (a, 6) vs. a for various
values of 8 for Earth-Venus and Earth-Mars trajectories.
The (am, T.) points of the various curves are connected
by a dashed line. Note that

T<Ta<T
and -
(- (P —T)< (P~ T}

for any given 4.

Figures 11 and 12 are plots of T (a, 6) vs. 8 for con-
stant @ for Earth-Venus flights and Earth-Mars flights,
respectively. Figure 13 illustrates the regions of the plots
in which the various T (a, 6) forms are valid. In both
plots the horizontal dashed line cuts the curves at values
of # for which the particular a is a,,. The intersection of
the two dashed lines is the HHohmann point. The value
of a at this point is the a,, for § = =. For § = =, since

s ritrte
4
and
then
dan =r +r:+\/r: +r2+ 21,
or
@ (Hohmann) = 2072 (20)

The curve marked @ = » is the parabolic limit of the
elliptical and hyperbolic orbits.

Figure 14 is a view of the T (a, 9) surface sketched in
rectangular Cartesian coordinates (T, a, 8) for elliptical
Earth-Venus trajectories.
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VI. THE APPLICATION OF LAMBERT'S EQUATIONS TO TRANSFER PROBLEMS

Case I:

Lambert’s equations are very useful in solving transfer problems, especially when
the energy of the trajectory is either known or desired, and the eccentricity of the
orbit is unknown. In the three cases discussed here, as in most transfer problems,
the space mission is specified, that is, r, and r. are considered known quantities.
When T (a, 6) is known and it is desired to find a or 4, the equations must be solved
backwards by an iteration procedure such as Newton’s. The techniques of such
procedures will not be dealt with here, because of the abundance of such discus-
sions in the numerical analysis literature. In the cases discussed, straightforward
methods for determining which forms of Lambert’s equations are valid, for a given
set of input parameters, are presented.

Given: a,0(0 < 8 < 2x)
Find: T (a, 6)

The solutions to Lambert’s equations for given a and 6 correspond to flight times for
a hyperbola, an ellipse, or two ellipses. Under certain conditions, no solution exists.

Test for elliptical or hyperbolic motion:

If:a <0
If: 6 < =, T(a,0)=T
If: 6 > ‘ T(a,0) =T
If:a>0
Compute: a,, (8)
If: a < an (6), : no solution exists
If: a > an (0)
If: 0 < w, T(a,6) =T
T(a,6)=T
£:0> T(a,0)=P—T

Case 1I:

T(e,0)=P—T

Given: T, 6 (0 < 6 < 2x)

Find: a

For given values of T and 6, a unique @ exists.

14

(hyperbolic conic)

(elliptical conic)

(two solutions)

(two solutions)
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If:BS-n-

Consider
Compute
Compute

Compute

If:
If:
If:
If:

Hf:0> =

Consider:
Compute:
Compute:

Compute:

If:
If:
If:
If:

Case III:

Given:

Find:

If:a<0

Compute:
Compute:

Compute:

If:
If:
If:

If:

& 4 ?, 17, and T, equations
D an (0)

:Tu(8) =T [an (0)]

: T (8)

T < T (6),
T =T. (8
T.<T < Tu(h),
T > Tull)

a, ()

T. (8)

T<T. (0
T=T.,

Te <T <P —Tal(f),
Tap=1.,

T (a,0)
T (a)
T’ (a, 2x)

T < T’ (a,0),
T (6,0) < T < T* (a, 2x),
T (a,2x) < T < T (a,=),

T>T (a,=«),

P=T P~ :F, '1’::, and ’.'I-':.B equations

P—T [an(6)] =P — Ta(0)

T(a,6)=T
T(a,6) = T.
T(a,6) =T
T(a,6=T

T(a,0)=T
T(q,0) =T.

T(a,0)=P—T
T(a,0)=P—T

no solution exists

T(a,0)=T
T(a,8)=T
T (a,8) =T

no solution exists

(hyperbolic conic)
(parabolic conic)
(elliptical conic)

(elliptical conic)

(hyperbolic conic)
(parabolic conic)
(elliptical conic)

(elliptical conic)

(hyperbolic conic)

(3(7.')
(6(#)
(0 > =)

(two solutions)

15
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If:a>0

16

Compute: a,, (0)
Compute: a,, (2 =)

Compute: a Hohmann

Test for: § < =
If:a < as(0),
If: an (0) <a <L

Compute
Compute
Compute

1f
If
If
It

a Hohmann

:Tw(a),a = a,
: T (a,0)
:T (a,0)

:T < T (a,0),
T (4,0) < T < Ta (a),
T (a) < T <T (a,0),
:T>T (a,0),

If: @ > a Hohmann

Compute:

Compute

If:
If:
If:
If:
If:

Test for: § > =

If: a < a, (2n),

T (a, =)
T

T < T (a,0),
T(a,0) < T <Ta,n)
T(a,%) <T<T(an),
T(a,) <T<T(@0),
T > T (a,0),

If: a,, (2v) < a < a Hohmann

Compute
Compute
Compute

: P —Thu(a),a = an
: P— T (a,2x)
: P — T (a, 2n)
: T<P—T(a2n),

: P T e A ET 0 - Eile)
: P—Tyu(a) <T<P—T(a,2),
: T>P—T (a2,

no solution exists

no # < = exists
T (a,8) =T
T (a,08) =T

no # < = exists

no # < = exists
T(a,8) =T
no @ < = exists
T(a0)=T

no § < = exists

no # < = exists

no # > = exists
T(a,60)=P—T
T(a,6)=P—T

no # > = exists

(elliptical conic)

(6 <)
(6 <)

(6 <)

(0 <=

(8 > =)
(6 > )




JPL TECHNICAL REPORT NO. 32-521

If: @« > a Hohmann
If: T<P—T (a2),
I P~T (o) < T LT (a.5).
If: T(a,x) <T < T{a,)
If: T(a,n) <T <P —T(a2n),
If: T>P — T (e 2x),

no § > = exists

T=P-T 6> =)
no f > = exists
T(a,0)=P—T (6> =)

no > x exists

APPENDIX A

Geometrical Properties of Elliptical Trajectories

Take two general points, P, and P., in the field of a
central gravitational force F, and let r, and r, be the dis-
tances from F to P, and P., respectively. Let # be the
angle subtended by P, and P.. (See Fig. A-1.)

Consider ellipses with semimajor axis a, with one focus
at F, which pass through P, and P.. Let r/ and r} be the
distances from the vacant focus F’ of such an ellipse to
P, and P,, respectively. From the definition of an ellipse,

2a

il

r+

and

Ny

ry + 1}

Fig. A-1. Geometrical properties of elliptical
trajectories

so that
r! =22 —r
and

rr =2 — 1,

Construct circles of radii r/ 7/, (see Fig. A-1) about P,
and P., respectively, for

£ ntrnt Ve —2nrecosf _n -f-;g+c L
_f1+fg+c
- 4
and
rn+r.-+c
a>-——-—-—:1—

It may be seen that if

rn+r+c

a < 3

no F’ exists, and hence no ellipse is defined. If

n+rtc
4

the circles intersect in, at most, two points, F and F,, and
two possible ellipses are defined. In the special case
where

a>

_wybrstg

a )

the circles intersect at one point, F’, and one ellipse is

defined. 1

=
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APPENDIX B

Geometrical Properties of Hyperbolic Trajectories

Consider hyperbolas with semimajor axis a, with focus
at F, which pass through P, and P.. Let r and 7 be the
distances from the vacant focus F’ of such a hyperbola
to P, and P., respectively. (See Fig. B-1.) From the defi-
nition of a hyperbola,

and

so that

and

Sincea < 0,

and

n—r==%2

rn—r'=2a

r'=r,— 2a
T2

f;>f2

Construct circles of radius 7/ and 7, about P, and P,,
respectively. It may be seen that for any a, the circles
intersect at two and only two points, F/ and F, so that
two hyperbolas are defined.

18

Fig. B-1. Geometrical properties of hyperbolic
trajectories

By allowing a to approach — o, one can see that two
and only two parabolas are defined.
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