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A bound particle moving in the gravitational field of a "stationary" celestial
*
a

object will have an elliptic trajectory. Its period P is given by P = 2n | v

where WL = GM3; G being the gravitational conStant, and M being the mass of the
celestial object setting up the field. It is well known that if two points, P and
Q, lie on a general conic trajectory, the time required for the particle to traverse
the arc §Fa is dependent only on the semi-major axis a of the conic,'FE +.Ea
where F is a focus of the conic and the distance between P and Q. Let us denote

ry = |22 r, z'§5 and ¢ = PQ. Consider the problem of finding an ellipse passing

through two specified points, P and Q, and one specified focus F.

Now the definition of an ellipse can be stated as the locus of points the sum of
whose distances from two fixed points (called foci)is constant. We may assume with-

¥*
out loss of generality that T,> Ty Thus if F is the other focus, it must satisfy

— — i
the equations PF + T, - QF + g - 2a, Consequently, if PF = 2a - Ty
— *
and QF = 2a - Tos F will be a second focus. These points are easily obtained by

considering families of circles about P and Q with radii 2a - ry and 22 - 1.,

respectively. The intersections of these families determines a set of pairs of



L

JET PROPULSION LABORATORY -2- TECHNICAL MEMO #312-118

P X
points (F ,FF ) each of which can be the second focus. Consequently, there are two
different ellipses which satisfy the conditions of the problem. It is clear that

if the radii 2a—rl, 2a~r2 are too small, the circles will not intersect. Hence,

there exists a minimum value of a, say a guch that the circles intersect in

only one point. Since this intersection must occur on PQ, we have 2a11 - Ty

- = e i = 2 ::.:1‘ = 8.
+ 28 -1, =c. Thus letting %{rl 0 4 ¢) = s, we have a 2(rl # iy & e) = s

Since the kinetic energy of the particle at P of unit mass is uf% - %5) where
T m-ff, it is clear that this will be minimum if a = a . Thus the unique ellipse,
having a semi-major axis of a = a , can be called a minimum energy ellipse.

It can be shown (see R. Battin, The Determination of Round-Trip Planetary

Reconnaissance Trajectories; ARS Journal/Space Seciences; pages 550-52) that when the

E'S
vacant foci is at F , the time T required for the particle to traverse the elliptic

Y
arc P Q is
(1) T = %Egg [(u g g) » 1B - sin ﬁ)]
- 3. — ¢
where sin %‘m V'Eg, si '% =Y gag . If the vacant focus is at F , the time T

can be expressed as

(2) i P --%; P [ (¢ - sin a) + (B - sin ﬁ)]

If we set By = L -'g, X, = 1 - E;E and make use of the trigonometric identities

i n il
sin‘g = +(1 - cos ©) and sin(coswlx) = VG.— 12 ; cos"lx Sl Salcat

equations (1) and (2) can be expressed as

3 R
(3) T o= \V2 {'Vl = x2 b 1 x2 . i % }

n 2 2 1 1

(4) W ﬁz { 5+ ¥l = x22 + sin-l x, + ¥1 - le + sin” X 2
It 8 = a the two ellipses are coincident and T = %: This can be shown analytically
by substituting a = a_ = %3 in (3) and (4) noting that in this case X =1 --éj = -1
ol oin™ (e1) = st 1w - % Thus it is clear from (3) and (4) that T¢T

where the equality holds only when a = am. Let the expressions on the right side of
equations (3) and (4) be denoted by f(a) and ?ta), respectively, so that T = f(a)

and‘%‘: ?(a). Omitting the details, one easily finds
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(5) s_l.i:,_%;(zl+

l+x ®

2 1-x,
m £ .3, L E _c)./“x /‘i e }

‘/—_— \/1-x

Now it is clear on physical grounds that f(a)> O and f(a)> 0. From (5)

i( b 1-x2 g 1-—:1§

f'(a)— - © as a— a and from (6) rf'(a)-—>+ m as a— a.m. Hence the two curves
(T, a) and (T- a) are joined at a = a_ such that the total curve C has a well
defined tangent line for all values of a where f and ? are defined (i.e. s amé a).

In order to simplify an analytical investigation of C 1let us consider values of

a in the closed interval a_< a T + T, Sincea = s = f}(rl iy ¢) and

¢cgry,+ 1, *this interval can be expressed as ¥ (rl + r2) < a< ry + T From

1
equation (6) since s - ¢ = %(rl By - c)20 T'(a)> 0. Thus this upper half of

C increases with a. For the lower half of C where T 1is given by f(a) it is
2

convenient to consider "@“g" . Consider the expression
da Tarthelt
\/'1 - X5 1
148
(8) S xg
8 - ¢C
8
/1 - X 1
1+ 3, \/1 g
1
S g - C ' i i
Since x; =1 -, and x,=1- we obtain s = a(l - xl) and 8 - ¢ = a(l xz).

Thus (8) may be written as

1-x 1 1
¥ e 1 a7 oo
1-x, 1+x, i \/l-xz y 4%, 1-x, Vi-x, - \/1_—-):2 . V 1+xy

-z, 1-x, 1 ity yl-x, - (L \X1+x2
s 1-x
1+x1 l-xl 1+Jtl 1
1 \/1 2
(9) 1-x2 1-x2-l 1-xl 1+xl s x_2 =%, =X 4

Tele Tt : e
SRR . T I W i S Y
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2 g-~C ¢ c 4 2 c o]
Now 1-x, = 1-(1- ~;f0 = 1 -(xl +-;) o T (2x1 #
r. +r,+¢ r, +r
5 . 23 ¢ Sk o . B ie Rl
le + s 2 5 + Pl P - + s » 2 - s . Hence
r. + T T T
e R ey _ g
max (22, + %) = 2-=%=—" =1, min (2x, + a) =242 o 0
2 1 2
2
Thus 2x; + ﬁ-z 0 and we conclude that
(10)
>1
1 - X2 _c c .
a(le . a)
From 132 -'E—];'(rl + r2) > 0 we write using above results
1 8-~-c )
lg2—;{2a—-c) =1 - + 1 ~ :x2+x1
5 ¥ ek S s )l s R)lon .~ x2
Sk 2 de = 3 2 1
: 2 2
g X, =X, 2 xl - X 1
-.- x2(1 = xz) g xl(l = xl)
s X 1l ='x
oW
1 1

With this result and (10) we obtain, since (8) is equal to (9), the important

inequality

L Ji - X 1 1l-x 1
(8 - ¢) g x2 - (s ~-¢c) 5 2 S i:;i - 8 5
2 V1-x > e | 1-x,

which can be written as

1l - x, /1 - Il }
(Fs - ¢) 1+x, e 4 9 X, Vf__d—- VE:;?_

Employing this result in equation (7) we find

RV
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Since %§ —> - 0 as a—a_ we may now conclude that the lower half of C for values
of aina <adr +7, will be convex from below, Thus the curve C will take on

the general shape of

T
i
|
|
H
|
|

T(am) z

\f
o

Suppose a particle is moving in an elliptic trajectory about a gravitating body of
mass M (i.e., the particle is in free fall motion but bound in an orbit about the
body). If one specifies two points‘;; = 0P and ?2 = 56} which lies on the tra-
jectory, and the time T taken for the particle to pass from §; to Fg, one--and only
one--trajectory exists which satisfies these conditions, (provided T is greater than
some minimum value To)' We consider two possible cases:

(1) r<1(a) (i3] 23%a )
2l i T T(am) we consider two sub-cases:

(a) T(am)> T:vT(rl + r2)

(n) T(rl + r2)>T
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In practice, it turns out that case (i) is more important since short flight times
are desirable. Now as a increases,. the kinetic energy of the particle increases,
hence the sub-case (b) above will be unlikely, Consequently, we consider a method
which, for case (a), will always yield a sequence gakg converging to the desired
value a corresponding to the prescribed flight time T, First, choose an initial

value of &,say & ,such that T(am) > T(ao) ST,

T b 4

A i

T(am) f o s s = = e

By the figure it is evident that

s fe e g i
e = BRN® = bErn < = tan = —P'ia
8K, ~ 8k k
H
ence f(ak) P i
f'(a Bl = Al

k
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f(ak) -T
el T e

The sequence [ak} will necessarily converge to the desired value a because of

the convexity of the lower half of C in the interval a g 8 5 T, + T i5

case (b) is true, one may still apply (11) if it is found by investigating the sign
of f" in a neighborhcod of a that the method yielding {ék% will be convergent.
In a similar manner, it is easy to see that case ii presents no added difficulty

and (11) may also be used to calculate the semi-major axis a by appropriate

substitutions.
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We now consider the error Ek+1 in the k+l1 th iterate. Ek+l = Ia - &k+J'
If {ﬁk} is convergent to a then the following argument holds for either case (i)
or (ii). In dealing with case (i1) one replaces f(a) by‘E(a). Now by equation

(11) we have

B ™ |a £ ak+1|

But we may write

f(a) - T
|a X ak * f'fakj

gt

i

fla) = f( + (a—ak £ (ak) 4+ = (a-ak f"(ak) R
£(a) + (a-.ak) £ (a #4(a-a,)? f'-(ﬁ )

or
i

where C]£ lies between a_ and a. Hence

?-fla) e Y f"(ék)
i a, k ak f'(aki
Thus
f'(ak
E %’(a—'ak)z f"(é )

Hence since agﬂé-a

(12) Be ™ % Ezk | .

£*(a)
Since %-%;%%% is a constant, this shows that the error in a1 is approximately
proportional to the square of the error in a - Thus we should expect rapid con-
vergence.

After determining the semi-major axis a with sufficient accuracy, the trajectory
will be completely determined by finding the corresponding value of the eccentricity
€. This is obtained by making use of the dependence of € on a, set up by the initial
condition of requiring F to be a focus and P and Q to lie on the ellipse. It can
be shown (see above reference, page 549) that if the second focus if F* or f*

the corresponding values of the latus rectum are given by
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1 = [i%-(s - rl) (8 » rz)] " g“%“E
T [-i% (a - rl) (8 = rz)] ain® ELi?Ji

2 4 :
respectively. Making use of the relation 1 = a(l -€") and introducing x, and

X, defined above, these equations can be written as

(13) o S (a-r)(s..rnl-”w/__“\/;-}

(14) EF = {1 - 25 (8 = »

Thus if the given value of T is such that T>'T(am) then after determining a with
sufficient accuracy by (11) with f(a) replaced by T(a), the eccentricity E:of the
elliptic orbit is given by (14). If T« T(am} one uses (13) after finding a by (11).
Before considering hyperbolic trajectories, it is important to know that a
solution of the above problem(having initial conditions F, Ea,'?é and T prescribed)

exists, Clearly if T and rl, T. are chosen so that

5 { is sufficiently large then,

since maximum Ivl > %—where V is the velocity of the particle, the particle may
be required to have a kinetic energy such that it cannot be in a bound state. Now

1 : :
23), o 2 LS T(am) then as a-—-®m the

™\
path P Q is traversed such that lim f(a) = T_ exists, and that o< T < f(a)
a5 00 . ®

for all a < a<m. Consequently, if the prescribed value of T is such that

since this kinetic energy is given by u(%-w

2 < To' no elliptic trajectory is possible and the solution of the above problem
does not exist. This critical value T0 may be obtained by employing a device known

as L'Hospital's rule. This rule for calculating limits states that

lim 1%1) _ lim  F'(t) if F(t)—>0 as t—> 0 and G(t)—>0 as t—t..
t—t ) 7 tewt OY(E
0 o
If we make the change of wvariable '% = a% . f(a) becomes
o o wl

t Vll { 1 - x + sin 7 x, - 1 -x g gin xl

2 2
where X = 1 ~-5s8t and X, = 1 - (s-c)t°., Hence as a-—— 00, t— 0 = t0 and we set

e =1 o, 2 -1
= Via = & =
F(t) l=x > + 8in X, 1-x 1 sin xl

G(t) = \fu_ tj.
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Teex., T,

- £ 4+ 28 1

Thys Ha T _ lim phERl 1+x, 4 Lxy
a=»®  t-o G'(t) ~ :

3 Vet

By a re-application of the rule we obtain

- Ilf—v-'-ﬂ—" r.m—-n-n
HnT s 1 }s-c dx, Vitx, % Y 1-X2 « dxl ]r\flﬂcl
ey T i dt A - zazsc
a-»>m ] Bvﬂr x2 Iq:;; Vivx, _ 1+xl dt Lﬁa"xl

2

1im \ -4(s-c) % % &EE_E___ﬁ o
t—r0 o o R o Lo
3V p.(1+x2) V 1-x 2 3y p.(l+x1) Vi-x 1
Now 1lim X, = lim X ¥ hence
t=—> 0 =20
: 2 , 2
lim T _ -2(s-c) . lim t = e Lim
a-—,m e g -t -3 0 joss I'*—- o an
SRV \;1__){22 3V V12
X
lim t
Let L1 IR = . Then
\l—x
1 e
Vo'
g o ing 1 _ lim il
1 to=p %(l-le)'% (_le) dxl t—o0 2xlst
dt
e
LT3 Vi-x') Poa
2a. 20 t ki 25L1
Thus we obtain Ll = m"'l—' . In a similar manner we find letting
\)’25
L2 = Jim \:_F____E
|
1-x 2
L2 = L —
V2(s—ec)
Consequently we obtain
2
T o= Yu® =%-§’¢:-71_—_ -%-(Sf,) Lo
a—» 00 Vi y2s v Ve(s-c)
L To = 2—!__,( % 33 - \"(3-0)3 )
SV

P st st

3Ven
trajectory will be impossible,
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We turn now to the case when the prescribed value of T is such that an elliptic
trajectory is impossible. That is to say when T 5 To. In this case, we must con-
sider hyperbolic trajectories, The trajectory will be parabolic if T = To' It
will be shown that when the semi-major axis a of a hyperbolic trajectory (with
vacant focus F*) increases indefinitely the corresponding time of flight approaches

To’ and the path becomes parabolic, We proceed as before specifying P and Q to
T,

y = 0Q with O the center of an attractive body of

lie on the path withT) = op,
mass M which, of course, is at a focus F of the hyperbolic path, Since the field
is attractive, P and Q must both lie on the concave branch of the hyperbola with

F its nearest focus. Hence if F¥ is a second focus

— ¥

—
B - & OF = r, = 2a,

1

according to the definition of a hyperbola which we take to be the locus of points
the difference of whose distances from two fixed points (foci) is constant. Thus

e R
PF = 2a+rT QF = 2a+r

15 2

Hence the vacant foci can be described as the intersection of families of circles

about P and Q with radii 2a + ry and 2a + T, respectively,




JET PROPULSION LABORATORY =12 TECHNICAL MEMO #312-118

These circles will intersect in two points (F*, ’f"*) Unlike the elliptic case, the
minimum value of a = 0. In this case one vacant focus Jf': coincides with F. The
other“f‘: is such that ?Pa bisects ﬁ: and hence the path I;a is PQ and corresponds
to an infinite velocity. The flight time T in this case must, of course, be 0.
The path corresponding to #13‘: = F is PF to Fa These cases, of course, are
unrealized. Hence there exists two possible hyperbolic paths having the same semi-~
major axis a corresponding to the vacant foci F* or ’ﬁ‘d* We observe from the figure
that the path with vacant focus at F* has greater eccentricity € than the eccentri-
city gof the path with vacant focus at Ff*

The time required to traverse the path ﬁa when the vacant focus is at ’1‘71"E or

F* was expressed by Bdttin as
T = \[_;_3_ [(sinha-u)-(sinhﬁ-ﬁ)]
")

\[ 2
F - i— [(sinha-a)+(sinhﬁ-ﬁ)]
where sinh % = V“S-;-— i sinh“g* = \/-gg—g , corresponding to paths having vacant focus

* ik < : s 8-C ;
at F or F , respectively. Thus smcevz >0 VEa_ > 0, a, B, > 0. Also since

in this case sinh @ > a, sinh P > B, it is clear that T < T, which we expect by

observing the figure. Employing the identities, sinh #x = V¥(cosh x-1) ,

e ;
coshzx % sinhzx b el (cosh-lx) = Vx“-1 for «x >1, the above expressions

can be written as

3F s
T \F [Vyz 1 - n::os',h"ly1 - Vyzz-— i b on™ y2]

£

i

i

w Gl -
T = Vﬁ—- yzl- i coshwly 4 y22 -1 = coshql Yo

1

where Ty = 1 +§ y ¥ = 1+ SZTC . Let the right-hand sides of these equations

be denoted by h(a) and ’l;(a), respectively. Thus

3 i
(16) n(a) =\/~f—‘:— [Vyz 1 « osl T ¥y - Vyz -1'}'cosh_1 Y, ]: P

3 2
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3 2
(17) h(a) = \/ﬁ" [ Vyzl -1 - coah"lyl + Vy22 -1 - COBh-lyz ] =
Omitting the details, we find
-1
D _.(_.l o ¥y
(18) gk » br(s) = (s-¢) B T
o y Ly y wl
T R CEE R {-cw
JaTx 2 b4

We now consider the limits of the equations @8 a—yo0 and a—>

we shall make use of the expansion for cosh™*x,

@, In doing this

cosh‘lx = Jlog 2x—%'L2‘%'%'—]?——%'%'%'-%—... (x>1)
2x 4x 6x
2
lim h(a) = lim{a\/; -%14-5) -1 j+ lim{a\[a— (cosh-ly —coah-ly)}
a 2 1
a-=»0
2
& 11m{a\/; ‘Wi 429 ..1}
y
= lim{\ﬁ; '\f(a+s) -8 }+ lim{a\/; log }-2-
13
1,11 S Wy O O5 TN
MY ¥y o ¥y To
- lim{\f; '\/(a+s-c)2.- 2}
- y
e 0 4 lim{a\/:a log;g'l— 0 since
1
2 - l+§—-ﬁ7a) and y, = 1+§;—c-—7m as a-—o0
¥
Him = ® ' S;C a+s-c s-C
a—»o0 71 a—»0 = lim = g Hence
s a+ s s
1 4+ =
a
lim h(a) = 0 as expected.
a—o0

From the above results we may write

-lim{a\/; (1og 2 v, + log 2 yz)}

-1im{a \faj log 4y, ¥, ]

1im nﬁ(a)
a—>>0

1]

-—lim{a \-X; log Y1 Y2 }
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a 2

lim ﬁﬁ(a) & .- lim{a \/; log E%'ﬁ)}= lim}ia \/: log a2J
a

a—>o0

Now lim y,y, = 1in¥l +2) (1 + _s.;_c:)} = 1im s(s-c) . Hence

= 2 lim].\/a. log aa} But aa--~—71 as a->o0. Consequently

lim h(a) = 0 as expected,
a-—»0

We now find lim h'(a)

a -0
Y-l y,-1

lin h'(a) = 2 lin ﬂaﬂl ¥ 1im§ L (s-c) 2+1 o 1+1 }
a-—>0 Ta—>0 \/a; Y2 1

-5 Ty [\/ i SRTESEMR TN o i }

- 2 1im \[; y 1—-1 - cosh 5 - Vy 2-1 + cosh Y5

yo-1 ¥,-1
" hmi"l—" [(3"“) 2+J_ _S\/ 1+1 ]}
Van ¥ Y1

Ii
N 1

a a
: 1 :
1AM = '(s o 4 i) since
- -1\&IL ul ¥ =~ 1
1im Va (cosh ¥y = cosh yl) = 0 as shown above and = l_*)l,
- O J2
y; =1
—>»1 as a—ro
y2 + 1
2
e 1
FEa TR U L 11111\/3_u (s-(s-c))+\7_—: £ =)
8&—> 0 aL
“ ® lim = = 4+
8 a—> 0 \/;J-
Since lim ’ﬁ(a) = O and A};(a) 5Z(a), lim h'(a) = + oo implies
a-—>0 i a—0
lim /ﬂ'(a) = + 00
a—30
N %
We now compute lim h(a)., Let t = a. Then
a— 00
lim h(a) = lim {‘—1"—- t3 [ v yelﬁ - \t:osh'ly1 - y22-1 - coshﬂlyz]}
a—>0m t—so0 s/E

Employing L'Hospital's rule with

3 5
Bt) = \‘yl-l - cosh"lyl - V'y2-1 + cosh™ y,
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1
* dy, —~—dy -+
aF ¢ % et O & e 2 dyp
lin h(a) = lim dt _ Hy')-1) 2y, o -Wolg -0 1) 2y, 3
a—yon to dg = &
¢ 3Vi t
ca.
\/—2— at
-1
g
-1 5
= 1im(28 l+1 - 2(3_(:) 2 ) =
o Yarl T 3\fus
[y;-¥ v
4 Y2
= lim dt{ 25\,y ] (8- s }

S rRETIR

i 8y, f / e B i1 N
i ¥y +l dt Yo +1 dt y2-1 Yo+l

'5\/3
o 08 ik lons 2——*,) gs c) (f ,,,,, __)

2

= l"‘J"_ 252 lim ‘t_'m ~2(s-c) lim t
3V t—o0 \/y21__1 t—>0 \/yzz_l
g T T L i ® L,
3/
where L, = lin L : L, = lin
a—0 2 1 a-yo0 2 1
y 1 y 2""
: A 1
9 Ll = lim __% le
3(y",-1) S ATy
i (3
: y,-l 1 T 1
= R o1 25 lim & * o
1 1
..«I L =
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1

In a similar manner we find L, = . Hence we obtain
. y2(s-c)
2 2
lin h(a) = = 25 _ 2(e=c)
a 400 3y (V2s y2(s-~c)
L ((SE) or
LAV
lim h(a) = 8
a ~—00
: o it i '&'
We now calculate lim h(a)., Let us choose T = a° so that as a~*mw. t—0 and
a8~%00

apply L'Hopital's rule with

T » IUy21~1 - cosh” yl Vy l - cosh” y2
E = \}J-. t3
Thus
o~ = o
Ha Ba)= la F = ln P
a—> o t—>0 G tro
dy dy -5 ay dy
. 2 1 ) ST : &3 241
3 11“‘0 {%(y 1% [ i U Hy 1) 2, 3 VI 0 b2
-> q(y— 3 -1 b
dy dy }
o~ ] 2
Iom Bia) « Ha o —
a->00 t~> 0 (yl “ 1 ¥ 8 (y2 2 1)’j 31f_'t2
2 I7 e
\/_- ] y 2—-1
/ Jois ThEEE e o R T ;
= 1lim -1 1
+ 2{(s-c) e
t—>o yotl LR 5‘
d Sy
Jyl *l (yl—l)% y1 - Yyt (yy) 4] ]
= lim t
t—>o0

+

*:- 1
[\/ 1 (y,-1)" ~¥ dyz V-l (y4l )% 3%, J 1
dt
3Vu

: dyy ay,
= T T & (s—c)at ,,/Y2*t Y-l | 3
t—o ( + ( & )
+ -1 y2+l y2-1 y2+l 3 \/E

+ 1

= Jijim
t—=o0

s—c) t ( ) 1

+1 J—Enu; ¥+l J;E”ZE 37 1

2
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Now we know lim ¥z = 1lim ¥y ® 1. So, recalling
>0 te=pp
5« DB = and L, = Mm we obtain

1 t~0 ‘(y2 -1 2 e \f*z*"*

1
f2s 3 2(5-0)2L2}

\/—---+ \(ﬂ C) )

1lim fﬁ(a)
a—» 00

tgj]“ -‘il

~—
Let us define To \F} ¥ V(«-—c) ) so that

¥ 3\f2u

lim h(a) = L0
a—>» 00

Hence we conclude that if a prescribed value of T is such that T> '1‘0 but T< ?0, i.e,,
TD( T« To

two trajectories are possible; an elliptical trajectory and a hyperbolic trajectory.

Now clearly as the distance between P and Q approaches zero, (i.e., as c—-‘-.-o),one

would expect all flight times to correspondingly approach zero. That this is not

true can be seen by observing the expression for TO. We notice that as c—=>o

"fo—)—f“— J;}. But since s = ’lf(rl s ¥ c), S'—:’-Hrl i I.1) s

r.. Hence
1

To—-B' i——z \[—3 This should not be too surprising for, by the above figure, we
notice 1"thzht; the hyperbolic path with F as vacant focus always passes around F so that
when c=>0 the path approaches the path from P to F and F back to P. This can also be
demonstrated analytically by using the expression for the kinetic energy of our unit

mass particle: % Uz :% yielding Vo r‘i‘y: . Now the time T required for the

particle to go from P to F is

1
6ol
v
o
I :
1
*f » - f o
2u, B 7 dp
A . \Vau A
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Thus the time to make the round trip is

i P -
— 1im as Cc—»0.

> Veu
Notice that f(am) = T(am) = '&/7 {( (1 - 3-—0)
+ sin 1(1 Aze * ) il #1(1 - %{5_ )}

5
¥ -1 2
T(am) = a)- %V‘Zu 121*+—-“S—\/s-c + sin (-1+;9-)

Hence I a 33
‘1‘(,-:1m _, = O and F(am)c~5 % 0 -

Now T = 11‘-—— \{53 and H‘i"o = 2-—,_“ \’155. Thus we may have
0 ¢=0 3 \/ELJ- C=8 3\ 218

T(a )> T when ¢ is near max. or T(a )< T when ¢ is small.
m o m o
With this information and information concerning f', f", h', and limits as

a approaches limiting values, we can construct general shapes of the graph of T

vs, a.
"Graph of T vg, a"
& (ﬁ 5T
Case 1: T(a )< T Case 2: T <T(a )
P
P
A /
long time elliptical
LT B S R £
~long time hyperbolic-case 1
g SRR g long time hyperbolic case 2
mﬂ-f P — — e Lias e e B e RO
Case 2, T oo
a S o short time elliptical
AR
ol B o I NS B Snnmrre
T short time hyperbohc
i g
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The first step in making a detailed study of possible conic trajectories associated

with prescribed initial values _;;_, 'EZ, T should be determining whether case 1,

f(am)<Tn; , or case 2, ¥o< f(am), is true so that a general graph may be obtained,
To complete our analysis of hyperbolic trajectories we write an iteration

method for obtaining a corresponding to T,<"FO
h(a.[(__) ik
WA w T WS

Since T0< JE[‘#O, a second hyperbolic trajectory is possible if TLT
h(a,) - T

&k+1:ak g rfl‘(ak)

Thus if To< Tc;_‘f"o two different conic trajectories exist; an elliptical trajectory

and a hyperbolic trajectory. For the hyperbolic paths Bdttin shows that

Boia Li%(g-rl) (s-—r2) . %(CH?’)]
4 ]

g [%(S—-I‘l) (s;—rz) sinh2 %(a——ﬁ)]

: L . : 2
corresponding to paths with vacant foei F and F , respectively. Since 1 = 3(6 - 1),

these equations yield )
RS V.2 - SR
€ = (1‘*'_5'(3"r1) (s=2.) (m3p ¢+ Yo 1 Yy A

1
c

26 AR
€ = (1 + % (s-—rl) (s-—rz) (ylye - \/y21..]_ y22-1 -1}

c

Summary of resulfs for alternative method of determining possible conic paths
associated with prescribed values of -1?1,. ?2, Ml and T wher@_r'i = ﬁ, r, = ﬁa,
M is the mass of the single gravitating body at the focus F and T is the flight
time from P to Q.
(i) Calculate f(am) and "f"o to determine general graph of T vs. a by:
Case 1, f(am)<"f'0, Case 2, ¥0<f(am) (see graph of T vs, a).
(ii) Calculate T, to determine whether an elliptical path is possible (if e,
an elliptical path is impossible.)

(iii) Determine whether an elliptical path and a hyperbolic path are both

possible (i.e., if T <17 <$5).
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(iv)

Determine the functions yielding T:

a) if fla )T use 'F(a) for elliptic path

b) if T¢T

¢) if T ¢T
o]

| FaN

f(am) use f(a) for elliptic path

HaN

han ~
Tc: hyperbolic path also exists with T given by h(a)

d) if T<T° only hyperbolic paths exist, T = h(a) for short hyperbolic flight

(v)

(vi)

(vii)

times, T = h(a) for long hyperbolic flight times

Determine a with sufficient accuracy by

o F(a) - T |
o . | %
da
where F(a) is the function yielding T
error in k'th iterate = Ek = ,a - Bk has the relation
2 F" a
o 1
it ™7 ¥y |95

showing rapid convergence to solution T(a) = T

Determine the eccentricity after obtaining good approximation of a by :

E = {1 - :::~2~(3 A rl)(s = r2)(1 Sl \/1-1.21 Jl——xzz)

12
5 — = )#%
€ =281-*Hs-r)Ma-1r)Q-x o B S b )
c2 1 2 1 2
for an elliptical path when T is given by T = f(a), T = ’f"(a), respectively.

€ = {1 P 2—2(5 - rl)(s r2)(yly2 + Vyi-l Vy22-1 —1)} #
o ¥
r,) vy, - Vy21-1 ¥ -1 -1))

1%

i

e 2

s 2

€= {l 4-—2(5 = rl)(s
for hyperbolic paths when the prescribed time T is given by T = h(a), d~d
gk =’H(a), respectively.
Formulas for above expressions:

c distance from P to Q@ = ﬁ

i

P 2
:\[r1+r2 -2 r.r, cos O 2]

ik £ PFQ

—E2 +"§-2 27T..T.
gabod £ g 3 e
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1 8
a8 = 2 am i
S 8-C
x, = 1 - . X, = l - o5l
8 8-~C
5 0 B LR
5
fla) = /& Vl—x2 + sin_lx oV ia® « iy
n 2 2 J; il
i \/‘—
fla) = - { Ao+ Viax', + slox, + 1-x T sin Xl}
af (a) , 3e(a) 2 hegs Ay
iR (2) = 2 e (8-c) ks SV e
\/au 2 1
o~ ~ 1-x Lo,
af & 3 f(a) 1 ;1
2 o= f'(a) = = = + =% (s-c) : + s
da L c;: 1+x lkxl
n(a) = \/Ez— 5’ 1 osh £ ”1 + cosh
a = m ( ¥ - 0 }’l il J 2" c 3’2
= 2 ST
h(a) = e { y2 -1 - coah_l T y2,\-—l = wsosh ¥
08 ¥ 2 2
y,-1 ¥y,-1
%E = W{a) = % %ﬂl X lh“ %(S"C)\/ 8+1 e 1
; ap I2 Y1
74 o ~ yo-1 ¥y~
dh . 38 L 2 1
e T A (a) = -l e (s-c) +1 +1
vau \ ]
b = GM where G is the universal gravitational constant and M is the

mass of the body about which the conic trajectory takes place,

It is found convenient to use a year as unit of time and A.U. as unit of distance.

MM:1s



