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Planar motion of a particle of negligible mass from the neighborhood of a gravitational center (the
““earth”) of mass 1—pu to the neighborhood of a second center (the “moon) of mass u is studied by asymp-
totic methods for the case u<<1. The calculations are carried out for the case of two fixed centers. It is
pointed out, however, that the methods used are also applicable to the case of the two centers rotating
around their center of mass, that is, to the limiting case of the restricted three-body problem for which the
second mass is much smaller than the first. A uniformly valid solution describing the passage from the
earth to the moon and the motion in the neighborhood of the moon is obtained. Each part of the motion
is in the first approximation a2 Keplerian conic relative to the earth and moon, respectively. However.
these conics cannot be matched directly: In order to determine the second part, as well as the subsequent
motion, it is necessary to compute a correction of order u to the first part. This statement is equally true

for the restricted three-body probiem.

I. INTRODUCTION

N describing the motion of a particle traveling from
the vicinity of a massive celestial bodv to a much
smaller one (say from earth to moon) it has been
commonly accepted that a crude first approximation
could be had by patching two Keplerian conics ap-
propriate to the motions in the vicinity of the individual
bodies.

In this work, this intuitive idea is re-examined with
the point of view of deriving a uniformly valid asvmp-
totic approximation for the solution, applyving the
methods of singular perturbation theory. It is shown
that there is no mathematical justification for the direct
patching of conics, and that a higher approximation to
the motion for the initial leg must be used in order to
derive a correct approximate description of the entire
motion.

Consider the restricted three-bodv problem and let
the mass p of one gravitational center, the “moon,” be
much smaller than that of the other center, the “earth”
of mass (1—p). Approximations to the motion of a
particle moving under the influence of these two centers
mayv be obtained by developing the solutions in powers
of p. The influence of the moon then appears as a
correction of order x to a motion which is Keplerian
relative to the earth. This scheme fails, however, when
the particle is in a region sufficiently close to the moon
for the attraction of the moon to be dominant. As
discussed, for example, in Kevorkian (1962), the motion
in this region is to first order Keplerian relative to the
moon. To study this motion “blown-up” coordinates
are used, i.e., distance to the moon as well as time are
measured in units which are suitable powers of u.

For trajectories which leave the earth, approach, and
are influenced by, the moon and upon leaving its
vicinity again become dominated by the earth’s
attraction, it will be shown that to first approximation
the moon’s effect is represented by a discontinuity
in the slope of the orbit at the lunar location. The

* Presented at the 17th Annual Meeting of the American
Rocket Society, Los Angeles, 13 November 1962,

magnitude of this discontinuity depends upon the
angular momentum of the hyperbolic orbit associated
with the moon; since this quantity depends strongly
upon the distance of lunar approach (which is of
order ) it is impossible to isolate the correct return
orbit out of the one-parameter familv of possibilities
unless one carries out the solution for the approach
leg to order u.

Thus the composite solution which approximates the
exact complete motion uniformiy must include a first
correction to the Keplerian orbit for the approach leg.

For the purpose of illustrating the basic ideas dis-
cussed above it is sufficient to consider the simpler
problem of two fixed force centers since the crucial
questions of approximation and matching procedures
hinge on the nature of the gravitational terms, and do
not depend upon the fact that these centers rotate.
Actually, the problem of two fixed centers may in
principle be solved by quadratures, since two integrals
are known. However, instead of starting from the
integral representation which formally gives the exact
solution, we shall use perturbation metheds which
proceed from the differential equations and hence apply
to the restricted three-body problem for which onlv one
integral is known.

II. BASIC EQUATIONS, INTEGRALS

Only the planar problem is discussed. We consider
two gravitational centers in the plane: the “‘earth” of
mass 1—u and the “moon” of mass u. A particle, the
“spaceship,” whose mass is negligible compared to u
(and to 1 —u) movesin the plane. Denoting its Cartesian
coordinates by x and y and using suitable nondimen-
sional quantities, the equations of motion are

d/fl—p u
I’=-—( +—), (2.1a)
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where
(%eme) = position of the earth, (2.2a)
(&) = position of the moon, (2.2b)
ré= (v—$J+ (y—n.), (2.2¢)
ru’= (r—u)+ (=) (2.2d)

We obtain the equations for the restricted three-body
problem by putting {in this case distances are normal-
ized by D, the distance between the earth and the
moon; the time is normalized by [D%/G(me+mam)]t,
where G is the universal gravitational constant and
iy, and m, the dimensional masses of the moon and the
earth, respectively; p is min/ (mnt+m.)}

&= —p cos(i—y), (2.3a)
ne=—psin(i—y), (2.3b)
fm= (1—p) cos(t—¢), (2.3c)
7= (1—g) sin(i—y), (2.3d)

where ¢ is a constant defining the position of the earth
and moon at (=0.

This paper is mainly concerned with the problem of
two fixed centers, in which case we put

Ee= "?e=0, (243)
fn=1, (2.4b)
sl (2.40)

In this case two integrals for Egs. (2.1) may be
derived. First of all, the Hamiltonian is an integral,
since it does not involve the time explicitly. This gives
the well-known energy integral

(2.3)

(Since the “‘earth” is now fixed at the orgin, we write
r instead of r..)

A second integral is derived in Whittaker (1944) by
introducing elliptic-hyperbolic coordinates. Actually,
a second iniegral having a very simple form may be
derived directly. It is

3@+ ) —[(1—p) T]— (1/rw)=h= const.

x  (x—1)
Ut (1=p)=—p =§=const, (2.6)
r Yin
where
/=xj—yi=angular momentum relative to
the earth, (2.7a)
l,= (x—1)j—yi=angular momentum relative
to the moon. (2.7b)

To prove (2.6) we note that by differentiating (2.7)
one finds

(a) f=1'y—}'f, zmzj_g-

Using the equations of motion one obtains

I==pyirgd, ln=(1—p)y/7. (2.8)

Direct differentiation gives the following identities:

drxy —yl dya—1\ =iy
o 2= Ao
di\r £ dIN g it

From these formulas it follows easily that the time
derivative of the left-hand side of Eq. (2.6) is zero.

Note that since two integrals have been found,
Eqgs. (2.1) may, in principle, be solved by quadratures
(Whittaker 1944). However, in the present paper,
perturbation methods are used in order to shed light
on their application to the restricted three-body problem
where only one integral is known.

Asyvmptotic expansions are studied for the case of
very small p in which the particle passes within a
distance of order u of the moon. Furthermore, we take
the simple case when the particle starts its motion very
near the earth. Rather than specify position and
velocity at /=0, it is more convenient to prescribe
the value of the total energv

/= prescribed, (2.9a)

and also

x=0, y=0, dy/dx=—pc at (=0. (2.9b)

Here ¢ is a parameter which determines the initial
slope. It is clear that for % sufficiently large and for
p=0 the particle will pass along a straight line from the
earth to the position of the moon. Hence, for u small,
it is expected that its minimal distance to the moon
will be of order . It will alwavs be assumed that k is
large enough so that for u=0 the velocity at the position
of the moon is >0.

III. TRANSFORMATION OF EQUATIONS,
EXPANSION PROCEDURE

As was pointed out earlier, it is expected that the
effect of the earth’s and moon’s gravitational attractions
will individually dominate in neighborhoods centered
at their respective origins. An expansion procedure in
which x, ¥, and ¢ are held fixed as p — 0 relegates the
moon’s attraction to a higher-order term as can be
seen from Egs. (2.1). Such a limit process will be
called an oufer limit, and the corresponding expansion,
which will be valid when the particle is not near the
moon, will be called an outer expansion.

Since for a sufficiently small neighborhood of the
moon the latter’s attraction can become dominant, one
must determine the appropriate variables for this case
by an analysis of the orders of magnitude of the various
terms.

Let the variables

x—1
I‘=_—! 3'*=2‘, =
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denote the inner or lunar variables, where r is the time
elapsed to reach x=1. When Eq. (2.1a) is written in
terms of the starred variables one obtains

&x* (1= p)u®*=(14pz*)

a1+ et (e y ) )

(a)

= P._l—h—'r—ﬁﬁ

Exazasd

Thus, in order fer the lunar attraction to be of the
same order as the acceleration, we must set Ja—23=1.
This is satisfied for an infinity of @ and B wvalues.
Kevorkian (1962), by a similar analysis for the re-
stricted three-body equations, found that for a=}%,
8=0, Hill’s equations were obtained for which the
Coriolis terms were also of the same order as the lunar
attraction, and that a smaller neighborhood of the moon
may be defined by a=3, =1, in which case the Coriolis
terms were of a higher order.

For the present case, the following argument will be
used to define the relation between a and 8. We are not
interested in orbits which stay permanently in a small
neighborhood of the moon but rather in orbits which
originate at finite distances from the moon and pass
close to the moon with a finite velocitv measured in
the outer variables. Furthermore, matching of outer
and inner solutions requires the velocity in inner
coordinates to be of the same order as that in outer
coordinates. Thus dx*/df*=0(dx/dt)=0(1). This im-
plies that a=g, and since also 3a—28=1, we find
a=1, g=1.

Hence we choose as inner variables

y=

=

(3.1a)

)

z—1 ¥ t—r
o ®

The basic equations (2.1) expressed in these variables
are

' (1=p)pu(14-p2*) z* (3.23)
s P o (3.2
" [ 2 ] [y

&5 (1—w .

== . . (3.2b)

e (14 2ux* @2 () [y

We observe that with the starred variables fixed the
limit as 4 — O for these equations represents motion of
the particle under the gravitational influence of one
center, the moon.

Thus, close to the moon the first approximation to
the motion should be a Keplerian orbit relative to the
moon.

The nonuniformity in the outer solution is expected
to occur in some neighborhood of the moon, and it is
hence more convenient to choose a distance coordinate,
rather than the time as the independent variable.

AND J. KEVORKIAN

Although there are more sophisticated ways of choosing
the parameters, for the purpose of this example it is
sufficient to take x as the independent variable, and
treat ¥ and { as functions of x.

It is easy to show that this transformation when
applied to Egs. (2.1) yvields

i x  (x—1) s
u.,.._=-—(1—p)-—p 3 (3.3a)
3 r £t
y!f t!fyf y y
e e (1 — ), (3.3b)
T Py

where primes denote differentiation with respect to x.
The initial conditions (2.9) are already in the ap-
propriate form if one regards these values to be pre-
scribed at the point x=0. :
The outer expansion will proceed in the form

(%) =to(x)Futs ()0 (), (3.4a)
y(x)=py (x)+0(). (3.4b)

Note that in the expansion for y the term of order
unity is absent. This is a direct consequence of the
special initial value problem chosen with y(0)=0 and

¥ (0)=0(p).
The inner expansion is given by
Ha*) = r=ple* (x*)+0 (), (3.5)
y(&F) = pyo* (x*)+0 (). (3.5b)

As pointed out earlier, f and y are of order u near the
moon. Hence the leading terms in (3.3a,b) are of
order u.

IV. ONE-DIMENSIONAL PROBLEM

It is instructive to study first the case ¢=0. The
motion is then one-dimensional; it is confined to the
interval 0<x<1 and is periodic, as can easilv be
deduced by studying the integral curves for various
values of % in the phase plane of x and v=dx/d!.

The energy integral reduces to

17dx\® (1—p) w
h=v(—) ——t—— for 0<2x<1; (4.1a)
2\dt x x—1

or if x is regarded as the independent variable, we have

1 (=) =&
h= } , 0<xg L
24 . x—1

(4+.1b)

The equilibrium point x,, which is a saddle point, is

located at
1—p— (u—p*)}
Yy=——————=1—ul4+0(), (4.2)
1—-2u

and the value of / for the integral curve passing
through x, is
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(1=2u)[pi+ (1—p)1]
(1—p)i—p!

=

=—[1+23+00)]. (3)

For values of />, the motion traverses the entire
interval, while for /1 </i,, motion, depending upon the
initial position, is confined to one of .the two regions
bounded by the intersections of the two branches of
the integral curve with the x axis (i.e., motion is
confined to a neighborhood of the earth or the moon
if h<h,).

We shall only consider the special case k=0; motion
then occurs over the entire interval since /i; <0.

When the expansion (3.4a) is applied to Eq. (3.3a)
one obtains

' 1
—_— (4.4a)
1" x?
L o3y 1 1
i (4.4b)

. + .
WL 2 (1—a)

The above equations possess the following first
integrals:

1 1
———=Jijy=const,
2{0' X

' 1 1
——+f————=/y=const.
fn's z 1—x

(4.5a)

(4.5b)

It is easy to verify that these are nothing but the
first two terms of the expansion of (4.1b).

\When Egs. (4.5a,b) with ke=/=0 are integrated
for our initial value problem, the following outer
expansion for { is obtained:

+2

\'2!=[§::'+p(§x3+x’—% logi )-I-O(p’)], (4.6)

—

for motion in the positive x direction.

It is interesting to note that {,(x), the first correction
to the unperturbed motion, possesses a logarithmic
singularity at the location of the moon. This is to be
expected, since (4.6) cannot be valid when x is close to
unity. The role of this singularity is discussed after
(4.12).

The inner expansion can be derived from Eq. (3.2a)
with y*=0. Here it is more convenient to let 2*' = —x*
= (1—x)/g, which is positive in the interval of interest,
be the inner variable.

Since the leading term of the inner expansion for ¢
corresponds to motion in the field of one attractive
center, we have the energy integral in the starred
variables

L(d2' /AP +1/2 = B*, @7
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The value of /i* is deduced by matching the velocities
for the inner and outer limits. General principles for
matching of expansions are discussed in Kaplun and
Lagerstrom (1957). In the present context matching is
most conveniently performed by writing an outer
expansion in terms of the inner variable and comparing
it to the appropriate order with an inner expansion
evaluated for large values of the inner variable.

By comparing Eqgs. (4.1b) and (4.7) we see that the
velocities match if i*=1,

Hence in the neighborhood of the moon ¢ is governed
by

o

(4.8)

di > A\ d
vz—==pp( ) +00),
14

d'l.:kf x*i’

where the negative sign is to be taken when motion is
towards the moon (i.e. the negative a* direction).

The integral of (4.8) gives the inner limit for / in the
form

VIt= (VIroetp{VIry () — [#* (14a*)
+sinh= (x*')}+0(),

where 7o+pu7y is the half-period of the motion and

should be evaluated by matching (4.9) with (4.6).
Again, if the outer expansion is written correct to

order x in terms of the inner variable, and the inner

expansion is evaluated for large 2™*'| Egs. (4.6) and

(4.9) give (for the case of motion towards the moon)
Outer expansion near x=1:

V2t=34u[(5/3)—log2+1 logu—x*’

(4.9)

+3log*14+0(s); (4.10)
Inner expansion for large z*':
Vati=Virotu[V2r—2*+1log2 (x*')}]4+0(?). (4.11)

By comparing (4.10) and (4.11) it is seen that these
match to order unity if =32 and to order g if

= (1/V2)[(5/3)+1% logu—2 log2].

For this example the composite expansion can be
obtained by adding the inner and outer representations
of { and subtracting the inner limit of the outer expan-
sion. This gives for motion towards the moon

xl
V2i=3d4u! dxl4+2d—L log

1—x

—log2—[* (142*) J\4+-2*'— logx*’

+sinh= (x*)} | +0(s2), (4.12)

and since the motion is periodic it is only necessary to
define ¢ on one leg of the motion.
One can verify that (4.12) is a composite expansion by
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noting it leads to the correct inner and outer expansion
under the appropriate limit processes. Hence, it is
uniformly valid on the entire interval. Note that the
logarithmic singularity near x=1 has been eliminated
in (4.12) since the singular contribution of the term

} log[ (1+4)/(1—2)]

is exactlv canceled by the term —} logx™®’.

The exact solution can be derived in a straightforward
manner for this simple example. From the energy
integral (4.1a) with =0 it follows that

% £(1-9) i dx
Vii= [ [——] d¢ when —>0. (4.13)
o L(I—p)—(1—2u)¢ di

This can be expressed in terms of elliptic integrals
in the form (Bvrd and Friedman 1954)

V2=[1/(1-2)4]f(x7), (4.14)

where
2
flx,y)=——{(2—Rk)E(sin~'z} k)
3yt

+2(1—E)F (sin~'x} k)
—Ex(1—x)(1—Fx)]}), (+.14a)
k=v74, (4.14b)
v=1—p/(1-24), (4.14c)

and where F and E are the elliptic integrals of the first
and second kind with amplitude sin~'x} and modulus &.

The approximate formulas obtained by perturbation
methods may be checked directly from the exact
solution.

V. TWO-DIMEXNSIONAL PROBLEM

Before carrving out the details of the computations
for the special initial conditions (2.9) some intuitive
ideas are discussed.

Consider an exact solution of (2.1), depending on the
parameter g, whose trajectory passes within a distance
of order u of the moon. As u tends to zero in the outer
limit, the limiting trajectory will pass through the
position of the moon, i.e., x=1, y=0. The trajectory
before and after this point will be called the first and
second leg, respectively, of the outer solution to order
unityv. Each leg will be a Keplerian conic relative to the
earth. However, there will be some kind of dis-
continuity at the position of the moon, similar to a
shock wave in fluid flow. The energy relative to the
earth will be constant on each leg. Actuallv, these
constants are the same. This follows from the fact that
in the exact solution, the total energy, as given by
(2.3), is an exact invariant. Hence, in the outer solution
the energy reltive to the earth is continuous. This
implies that the magnitude of the velocity is con-
tinuous. However, we expect the attraction of the moon
to alter radically the direction of motion or, equiva-
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lently, the angular momentum relative to the earth.
To order unity the first leg of the outer solution is a
Keplerian orbit defined by the initial conditions to this
order: The second leg is then determined to order
unity except for its angular momentum. It can be seen
that the second integral (2.6) gives no information
about the first-order outer solution. The details of the
change in velocity direction are given by the leading
term of the inner solution, just as the wviscous shock-
laver solution gives the details of the shock discontinuity
occurring across a nonviscous shock wave. Assuming
that the first leg of the first-order outer solution is
known, a determination of the first-order inner solution
is equivalent to a determination of the second leg of the
outer solution.

A more detailed consideration shows the following.
The first leg of the outer solution gives a certain
velocity at the position of the moon. According to
general principles of matching this velocity will be the
apparent velocity at infinity for the motion around the
moon given by the inner solution; an incidental result
is that this motion must then be hyvperbolic. To deter-
mine the inner solution completely we also need the
angular momentum relative to the moon. Once this is
known the change in velocity direction due to the moon
is known and the second leg of the outer solution can be
determined. From the first-order outer solution we get
the apparent velocity at infinity for the hyperbolic
trajectory around the moon. The slope of the first
asvmptote of this trajectorv is then known. In order
to determine the angular momentum we also need to
know the distance of the moon to this asymptote.
However, for the inner solution the length scale is of
order u in terms of the outer variables. Hence in order to
define the inner solution we need the distance to order u
from the moon to the trajectory. This requires not only
that initial conditions have to be considered to order u;
it is also necessary to compute the first leg of the outer
solution correct to order g. i.e., to compute the first
correction to the Keplerian orbit relative to the earth.

To summarize, it is expected that the terms of order
unity as well as order p will be needed in the first leg of
the outer solution in order to establish the appropriate
matching hyperbolic orbit near the moon and hence the
second leg of the outer solution.

When the expansions for v and ¢ given by (3.4) are
used in Egs. (3.3) the following differential equations
for t, 11, and ¥, ensue:

" 1
—_—=— (3.1a)
[P
H' 3 1 1
e, =— ’ (5.1b)
[ 1" R (1—.1')2
_\’l" il]”_\'l n )
—_——— (3.1c)
P v

|

St Kt
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These define the outer solution to order u, and if the
initial conditions (2.9) are used the first leg of the outer
expansion can be computed.

Equations (3.1a,b) are identical to the corresponding
one-dimensional equations (4.4a,b) since for this special
initial value problem yo(x)=0 and the / equations do
not involve v to order p. For more general initial values
this would not be the case and the equations for {
and v, need to be solved first before one can compute
" and { 1.

By straightforward integration the solution of Egs.
(5.1a,b) for {; and {; gives

1= to+,'dl+o (}“:) ] (5'2)
1 1
V2ip=—sinlprt——{x(1—pg1) ]}, (5.2a)
o o
Jl -0 i i 3
\%:_i [=(1 p-x)3+1/ x ) sin—‘pxi]
» p\—gz/ 2
2 2—f = ); 1
——sin~lpxi+ 1
2 =P\ | 20—p)
14 (1-2p)2— 2Lz (1 —p2x) (1—p)
O . o Y
1—=z
where

h=ho+phi+0(x%),
ho=—p*>—1.

In order to ensure motion over the entire interval
0<x<1, the condition h>—1 is necessary (cf. dis-
cussion for one-dimensional problem). In addition, we
only consider motions which are elliptic to order unity:
relative to the earth, hence 4, <0.

When the value for #,’ is substituted into Eq. (5.1c)
one obtains

2 (1—gz)y" —3xy)'+33:1=0. (3.3)
The general solution of (3.3) is easily found:
y=cp[x(1—p'x) J+cop’x. (5.4)

In view of the initial conditions y:(0)=0, 3,'(0)=—c,
the above reduces to

y1(x)=—cx.

Actually, the straight line is a Keplerian trajectory
although the motion along this line, i.e., x as a function
of ¢, will differ from Keplerian motion when terms of
order u are considered. The fact that the trajectory is
Keplerian to order u is a coincidence. If initial conditions
more general than (2.9b) had been chosen this would
no longer be true. Also, as indicated in Sec. VI in the
case of the restricted three-body problem, a trajectory
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which is a straight line to order unity is not a straight
line to order u.

The next task is the computation of the inner solution.
The inner equations, obtained by holding the starred
variables fixed as u— 0 in (3.2), possess the two well-
known integrals

1 7dx*\?  sdv*\? 1
h‘=—|:(—) +(-——) ]——=c0nst, (3.3a)
2L\ dr* ar [x*24qy* ]
dx* .
¥ =x*——y*—=const. (5.5b)
dr* dr*

First consider /*. This quantity represents the product
of the velocity at — e« with the distance of the asymp-
tote from the origin. From the outer solution evaluated
at x=1 we obtain the distance puc+0O(r*) between the
asymptote and the moon, while the velocity at =1 is
given from the energy integral as [2(1—p*)]". Hence
from this intuitive argument it is expected that /*
=¢[2(1—p* . This result can also be derived formally
by requiring the outer representation for / to match
with the inner. This means that when /* is expressed
in terms of the outer variables and evaluated at the
point x=1 its value must be defined by the results
computed from the outer solution.

By definition of the inner variable and /* we have

(x—1)dy vdx vy dx
e
u 4 pdt dt dt
but b 14
Y1 V1 c
2L 1400
dt t dz ;[ ]
and
dx 1 1
—=-=—{14+0(s)]
dat t ot
Hence

F=c/td'+0(u),
and since #¢'(1)=[2(1—p*) 1"}, the result
r=2(1—-p%)7

follows.
A similar argument for 4* gives

B*=het1=1—g>0.

Since k* is positive, the orbit in the vicinity of the
moon is hyperbolic, a result which was anticipated by
physical arguments.

The orientation of this hyperbolic orbit is easily
deduced by noting that the approach velocity at

= — along one of the asymptotes is parallel to the
z* axis and that the asymptote is at the distance ¢
below the z* axis (if ¢>0).

Thus, the hyperbolic motion is completely defined
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and is most conveniently expressed in parametric form
(Wintner 1947),

Let 2’ and y’ be Cartesian inner coordinates centered
at the focus (moon) of the hyperbola and symmetrically
oriented with respect to the asymptotes, i.e.,

x'=x* cosf—y* sind, (5.6a)
y'=2* sinf+y* cosf, (5.6b)

where 6 is the angle between the x* axis (or the asymp-
tote to the approaching inner trajectory) and the z’
axis. From the geometry of the hyperbola 6 is given by

f=tan~}(¢—1)},

where e is the eccentricity.
Then the hyperbolic orbit is defined by

2’=ga(e—coshu), (5.7a)
y' =a(e—1)} sinhu, (3.7b)
'—1y =a}(e sinhu—u), (3.7¢)

where a is the semimajor axis, ¢’ is the time of peri-
center passage, and # is the parameter along the
hyperbola. (x — — = corresponds to approach to the
moon.)

The relations between @, € and the constants 4* and
I* are the well-known results

1 1
=—= ¢ -.8
2k 2(1—p%) Gy
e=(1+2 =144 (1—p)" . (5.8b)

The relation between ¢ and ¢ is simply
U=t =1/p){t—[rot+un+0®)]}, (5.9)

where ro+pri=r is the time elapsed to arrive at the
moon.

When the parameter p is eliminated and y* is ex-
pressed as a function of x* one obtains

(e—1)

2—¢

*

y=

l——x“‘—l—a(c’-—l)
2 a*(e—1)7t
d:x*[l—--——l——] ], (5.10)
2 z*

where the positive sign is to be taken for motion towards
the moon and vice versa.

It is easily seen that Eq. (5.10) for y* does match
with the outer expansion to order p, for if this function
is evaluated for z* — — e it simply reduces to —c,
which is the value of y, at x=1,

The composite expansion for the orbit is then

y(@p)=uy* (&) +un(@+ut+0(?).  (5.11)

The reader can easily verify that the above expression
gives the inner and outer expansions for the orbit to
order p under the appropriate limit process, and is
hence uniformly valid on the unit interval.

The return leg of the outer expansion is not given
explicitly in this paper; however, the procedure for
calculating it is discussed.

With #* [*, and the orientation of the asymptote
corresponding to #— « (i.e., the beginning of the
second leg of the outer solution) known, all the initial
conditions necessarv to define the conic for this second
leg are known, and at this point one only needs the
first-order results since the trajectory is no longer
headed towards a region of nonuniformity. This
trajectory will in general be a nondegenerate ellipse
relative to the earth since  corresponding to £*>1 is
negative and the angular momentum relative to the
earth, /, is no longer of order p but a first-order quantity.
It is easy to see from the geometry that this value for [
is [2(1—p?) ]t sin26.

To define the time history for the first leg of the
trajectory and completely specify this part of the
motion, the first leg of the outer expansion for / must
be matched with the inner solution.

Following the procedure employed in the one-
dimensional problem, the outer expansion is written
in terms of the inner variable correct to order u. At this
point to simplify the calculations we shall take k;=0,
as this quantity is given by the initial conditions and
can be chosen arbitrarily. With the above choice Eq.
(3.2) yields

1 (1—p2)t x* 2
V2i=—sin"Yp +u [ sin~!p
I I (1—p o

(2—p%) 1
.

| ) { 2 .)![_"logp—-log;l(l—pﬂ
- gl

+log(—:€')]]+0(y:). (5.12)

To express the inner expansion for a* — — e it is
sufficient to evaluate the results given in parametric
form by Egs. (5.6) and (5.7) for #— — =, and this
gives

1
V2e=V2rgtp{Vir (o) +—ro log(—2*)
2(1—-p)

x* 1

(A=) 2(1—p)

logd(1—%)/

[1+4c(1=p) T 400, (5.13)
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MATCHED-CONIC
By comparing (5.12) and (5.13) it is seen that the

crucial terms proportional to x* and log(—2a*) do match,
and that in addition we must set

1
v‘Zr.J:—‘[sin"‘p—p(l-p’)‘]- (5.14a)
P

1 w[1+4c(1=p)] .
Vir= log
2(1—p) 1(1-p)
2 2—p
——sin~lp+——.  (5.14b)
P p(1—p)!

The composite expansion can now be obtained
according to the general principles already discussed.
This is simply the sum of the inner expansion for ¢
defined by (5.9) and the outer expansion defined by
(5.2) less the inner limit of the outer expansion given
by (5.12). As all the necessary information has been
worked out, this somewhat lengthv formula is not
exhibited explicitly.

An incidental remark is that for ¢=0, the above
results reduce to the one-dimensional solution in the
limit p — 0.

VL CONCLUDING REMARES

The essential purpose of this paper is to point out the
following results regarding the structure of an earth-
moon traiectory.

The trajectory of a mass particle originating near the
earth and passing close to the moon consists to order
unity of two separate Kepler orbits with respect to the
earth. The determination of the orbit after lunar
passage requires the computation of a correction to
order p to the first leg of the trajectory.

Even though the details of lunar passage may be
described to lowest order by a Keplerian hyperbola
in terms of coordinates and a time scale which are of
order g, this hyperbola cannof be defined by only
first-order information from the approach orbit. A
correction to order p for the first leg of the earth orbit
is needed in order to match it to the hyperbolic moon
orbit and hence to determine all the elements of the
moon orbit. The determination of the first leg to order
p requires not only use of initial conditions to order x
but also use of equations of motion to order u. As a
result the motion is not Keplerian to this order.

The lowest-order approximation for the second leg of
the trajectory relative to the earth is determined if and
only if the hyperbolic moon orbit is determined. The
limiting value of the velocity along the second asymp-
tote of the moon orbit gives the initial condition at the
position of the moon for the second leg of the trajectory
relative to the earth.
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In the simple example studied here, the first leg of
the orbit relative to the earth was a straight line. This
happened to coincide with the path traced by a straight-
line Kepler orbit even though the time dependence of
the coordinates along this path were not Keplerian to
order u. In fact, it was necessary to solve a correction
equation to ascertain that the path was a straight line.
For different initial conditions for which the first-order
orbit would not have been a straight line the correction
to order x would have given a non-Keplerian path.

It is pointed out that the solution for the first
correction to the time history along the approach orbit
contains a logarithmic singularity at the moon’s
location. This singularity indicates the fact that an
outer solution cannot be valid at a point of non-
uniformity, and, in fact, in the uniformly valid com-
posite solution this singularity is eliminated.

The problem of real interest is, of course, the re-
stricted three-body problem. In this case if a straight
line is chosen as a first-order orbit, and the initial
conditions are adjusted such that the particle would
arrive along this straight line to within a distance of
order u to the moon’s position, the correction to order u
gives a deviation from the straight line. This is indicated
brieflv below. A detailed discussion of earth-to-moon
trajectories in the restricted three-body problem will be
given in Lagerstrom and Kevorkian (1963).

We use an inertial svstem as described by Egs.
(2.1), (2.2), (2.3), and choose as initial conditions

x=0, y=0, dy/dz=0 at (=0 (6.1)

for some specified value of energy.

To first order, y(x)=0, and /¢(x) is again defined by
Eq. (5.2a). To first order the particle will arrive at
x=1, ¥=0at the time

. Iri - (1—p?)} 62
—\E[—sm p— 2 :f (6.2)

P

We now choose the time parameter ¢ in the earth
and moon orbits to be the value given by Eq. (6.2)
plus a correction term of order u, sav wy;. This ensures
that upon the arrival of the particle at the position
z=1, y=0 according to the first-order solution the
moon will be at a distance of order p from the particle.

The equation for y, is then

z
5(1-921)3’1"—?1'+5}'1

2 2 sin(l—¥)
=——sin(l—y)+ (6.3)
2 2[x*+1—2x cos(to—y) ]!

with the initial conditions y,(0)=dy,(0)/dx=0. We
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note first of all that y,(x)=0 is not a solution of (6.3).
Furthermore since the homogeneous equation corre-
sponding to (6.3) has been solved, and the right-hand
side consists of known functions, the general solution
can in principle be obtained by quadratures.

The method proposed here will, in general, require
numerical integration in order to evaluate the functions
occurring in the general solution of (6.3). However, it is
believed that a good survey of the various interesting
cases may be obtained by relatively simple calculations.

For any specific problem of engineeringinterest theap-
proximate results will, of course, have to be refined by
much more accurate numerical calculations. This task
will however be considerably more amenable once an
approximate solution, and approximate initial condi-
tions to perform a specific mission have been established
by a perturbation theory.

AND J.
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