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Planar motion of a particle of negligible mass from the neighborhood of a gravitational center (the
““earth”) of mass 1—pu to the neighborhood of a second center (the “moon) of mass u is studied by asymp-
totic methods for the case u<<1. The calculations are carried out for the case of two fixed centers. It is
pointed out, however, that the methods used are also applicable to the case of the two centers rotating
around their center of mass, that is, to the limiting case of the restricted three-body problem for which the
second mass is much smaller than the first. A uniformly valid solution describing the passage from the
earth to the moon and the motion in the neighborhood of the moon is obtained. Each part of the motion
is in the first approximation a2 Keplerian conic relative to the earth and moon, respectively. However.
these conics cannot be matched directly: In order to determine the second part, as well as the subsequent
motion, it is necessary to compute a correction of order u to the first part. This statement is equally true

for the restricted three-body probiem.

I. INTRODUCTION

N describing the motion of a particle traveling from
the vicinity of a massive celestial bodv to a much
smaller one (say from earth to moon) it has been
commonly accepted that a crude first approximation
could be had by patching two Keplerian conics ap-
propriate to the motions in the vicinity of the individual
bodies.

In this work, this intuitive idea is re-examined with
the point of view of deriving a uniformly valid asvmp-
totic approximation for the solution, applyving the
methods of singular perturbation theory. It is shown
that there is no mathematical justification for the direct
patching of conics, and that a higher approximation to
the motion for the initial leg must be used in order to
derive a correct approximate description of the entire
motion.

Consider the restricted three-bodv problem and let
the mass p of one gravitational center, the “moon,” be
much smaller than that of the other center, the “earth”
of mass (1—p). Approximations to the motion of a
particle moving under the influence of these two centers
mayv be obtained by developing the solutions in powers
of p. The influence of the moon then appears as a
correction of order x to a motion which is Keplerian
relative to the earth. This scheme fails, however, when
the particle is in a region sufficiently close to the moon
for the attraction of the moon to be dominant. As
discussed, for example, in Kevorkian (1962), the motion
in this region is to first order Keplerian relative to the
moon. To study this motion “blown-up” coordinates
are used, i.e., distance to the moon as well as time are
measured in units which are suitable powers of u.

For trajectories which leave the earth, approach, and
are influenced by, the moon and upon leaving its
vicinity again become dominated by the earth’s
attraction, it will be shown that to first approximation
the moon’s effect is represented by a discontinuity
in the slope of the orbit at the lunar location. The
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magnitude of this discontinuity depends upon the
angular momentum of the hyperbolic orbit associated
with the moon; since this quantity depends strongly
upon the distance of lunar approach (which is of
order ) it is impossible to isolate the correct return
orbit out of the one-parameter familv of possibilities
unless one carries out the solution for the approach
leg to order u.

Thus the composite solution which approximates the
exact complete motion uniformiy must include a first
correction to the Keplerian orbit for the approach leg.

For the purpose of illustrating the basic ideas dis-
cussed above it is sufficient to consider the simpler
problem of two fixed force centers since the crucial
questions of approximation and matching procedures
hinge on the nature of the gravitational terms, and do
not depend upon the fact that these centers rotate.
Actually, the problem of two fixed centers may in
principle be solved by quadratures, since two integrals
are known. However, instead of starting from the
integral representation which formally gives the exact
solution, we shall use perturbation metheds which
proceed from the differential equations and hence apply
to the restricted three-body problem for which onlv one
integral is known.

II. BASIC EQUATIONS, INTEGRALS

Only the planar problem is discussed. We consider
two gravitational centers in the plane: the “‘earth” of
mass 1—u and the “moon” of mass u. A particle, the
“spaceship,” whose mass is negligible compared to u
(and to 1 —u) movesin the plane. Denoting its Cartesian
coordinates by x and y and using suitable nondimen-
sional quantities, the equations of motion are
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where
(%eme) = position of the earth, (2.2a)
(&) = position of the moon, (2.2b)
ré= (v—$J+ (y—n.), (2.2¢)
ru’= (r—u)+ (=) (2.2d)

We obtain the equations for the restricted three-body
problem by putting {in this case distances are normal-
ized by D, the distance between the earth and the
moon; the time is normalized by [D%/G(me+mam)]t,
where G is the universal gravitational constant and
iy, and m, the dimensional masses of the moon and the
earth, respectively; p is min/ (mnt+m.)}

&= —p cos(i—y), (2.3a)
ne=—psin(i—y), (2.3b)
fm= (1—p) cos(t—¢), (2.3c)
7= (1—g) sin(i—y), (2.3d)

where ¢ is a constant defining the position of the earth
and moon at (=0.

This paper is mainly concerned with the problem of
two fixed centers, in which case we put

Ee= "?e=0, (243)
fn=1, (2.4b)
sl (2.40)

In this case two integrals for Egs. (2.1) may be
derived. First of all, the Hamiltonian is an integral,
since it does not involve the time explicitly. This gives
the well-known energy integral

(2.3)

(Since the “‘earth” is now fixed at the orgin, we write
r instead of r..)

A second integral is derived in Whittaker (1944) by
introducing elliptic-hyperbolic coordinates. Actually,
a second iniegral having a very simple form may be
derived directly. It is

3@+ ) —[(1—p) T]— (1/rw)=h= const.

x  (x—1)
Ut (1=p)=—p =§=const, (2.6)
r Yin
where
/=xj—yi=angular momentum relative to
the earth, (2.7a)
l,= (x—1)j—yi=angular momentum relative
to the moon. (2.7b)

To prove (2.6) we note that by differentiating (2.7)
one finds

(a) f=1'y—}'f, zmzj_g-

Using the equations of motion one obtains

I==pyirgd, ln=(1—p)y/7. (2.8)

Direct differentiation gives the following identities:

drxy —yl dya—1\ =iy
o 2= Ao
di\r £ dIN g it

From these formulas it follows easily that the time
derivative of the left-hand side of Eq. (2.6) is zero.

Note that since two integrals have been found,
Eqgs. (2.1) may, in principle, be solved by quadratures
(Whittaker 1944). However, in the present paper,
perturbation methods are used in order to shed light
on their application to the restricted three-body problem
where only one integral is known.

Asyvmptotic expansions are studied for the case of
very small p in which the particle passes within a
distance of order u of the moon. Furthermore, we take
the simple case when the particle starts its motion very
near the earth. Rather than specify position and
velocity at /=0, it is more convenient to prescribe
the value of the total energv

/= prescribed, (2.9a)

and also

x=0, y=0, dy/dx=—pc at (=0. (2.9b)

Here ¢ is a parameter which determines the initial
slope. It is clear that for % sufficiently large and for
p=0 the particle will pass along a straight line from the
earth to the position of the moon. Hence, for u small,
it is expected that its minimal distance to the moon
will be of order . It will alwavs be assumed that k is
large enough so that for u=0 the velocity at the position
of the moon is >0.

III. TRANSFORMATION OF EQUATIONS,
EXPANSION PROCEDURE

As was pointed out earlier, it is expected that the
effect of the earth’s and moon’s gravitational attractions
will individually dominate in neighborhoods centered
at their respective origins. An expansion procedure in
which x, ¥, and ¢ are held fixed as p — 0 relegates the
moon’s attraction to a higher-order term as can be
seen from Egs. (2.1). Such a limit process will be
called an oufer limit, and the corresponding expansion,
which will be valid when the particle is not near the
moon, will be called an outer expansion.

Since for a sufficiently small neighborhood of the
moon the latter’s attraction can become dominant, one
must determine the appropriate variables for this case
by an analysis of the orders of magnitude of the various
terms.

Let the variables

x—1
I‘=_—! 3'*=2‘, =







