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Abstiract

The purpose of this paper is to demonstrate thal an inter-
planetary trajectory simulation program which cbialne velocities
end positions of the astropomical bodies, as well as of the ve-
hicle, by mumerical integration yields & much smaller, simpler
program than one that obtains planetary informetion by table
look up; that no loss of accuracy resulis due to obtaining plan-
etary position by numericel integration rather than by itable
look up; that the solution is accamplished in reasoneble machine
time; and that this approach allows launch to impzet simulation
of interplenetary flight as only a minor modification to exist-
ing ballistic missile progrems.

Introduction

Developments in the field of rocket propulsion during re-
cent years have genersted the capability of launching rocket
propelled vehicles from the surface of the earth at very high
veloeities, This capability was first employed to place arti-
ficial satellites in orbit about the Earth., This first step
has been followed by probes which have impected the Moon or
escaped the Earth., The next logical step in this sequence will
be to hurl an instrumented packege to the neighborhood of an-
other planet. Adequate planning for such interplaneiary flight
reguires a study of the trajectory which such a vehicle would
follow, including the problems of propulsion, guldance, aero-
dynamics, ete., of now familiar long-range missile simulations,
and with the n-body problem added. PFor ballistic operation
gbove the stmosphere, the n-body problem 1s the total problem.
It is with this domain thet this paper is concerned,

Much valuable qualitstive and same quantitive information
eoncerning interplanetary trajectories has been obtained by
approximeting the vehicle's orbit by the solution of three two-
body problems, i.e., by assuming that the vehicle is affected
first only by the Barth, then only by the Sun, and finally only
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by the target body., However, s numerical integraticon of the
full n-body problem is still necessary for adeguate design work
(1). The asctual Tormulation of this processg for use with elec-
tronic computers cen take several forms. The choice of form and
the skill with which the formulation is sccomplished greatly in-
fiuence the capabilities and cost of operation of the resulting
snalysis toel. The Missiles and Space Systems Engineering
Department of Douglas Aircraft Company has developed such a
method. This has been progrsmmed for the IBM TO4 and TO9 EDPHM,
and hes been used for the simulation of both cisiunar and inter-
planetary £light. _

It is the intent of the preseni paper to show that the
method used lesds to a solution in & reasonsble computing time,
is conservative in use of machine memory, and may easily be
adapted as the gravitational contribution in & total system
simulation.

First, the form of Newton's law of gravitation which is
used as the equation of motion will be explained. 3Second,
methods of obisining initial planetary positions and velocities
fram: (a) the elements of the orbit and Kepler's third law, and
{v) by numerical differentistion of an ephemeris, will be in-
dicated and compared for accuracy. An explanation of the inte-
gration scheme and vhy 1t was chosen will corplete the discus-

sion of the present model. Program extensions to inclnde effects

of thrust, serodynamics and guidance will be indicated since
simplie extension is the main reason for this approsch. Appli-
cations to luper studles will be used to show the use of the
automatic hunting procedurs., The use of the program to check
and extend inferential two-body methods of interplanetary tra-
Jectory studies will also be demonstrated.

DISCUSSION OF METHOR
Forg of Gravitation Law

Programs for ballistic trajectory simulation in the solar
system must use azs the equation of motion of the wvehicle some
form of Wewton's law for the gravitational attraction between
two bodies of masses m; and mp,

2
r
where F = force of atiraction
r = distance between itwo bodies
G = gravitational constant
and Newton's second law,
F = ma {2}
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vhere a = acceleration. For the n-body problem, equations {1}
and {2) must be considered as vector equations. A cammon mech-
anization of these equations evaluates the camponents of

vectors in rectangular camponents. This may be written hese
IL
. (X, - X 2 .
mxjwznk S L S ) (3)
a3 a3 ez O
o Y Ok

vhere n is the number of bodles whose eff
" )
deencd signitiommt wo ¢t on the vehicle ig

W, = mass of the kth body

dmk: the distance between the vehicle and kth body
W, = mass of the Sun

dka the distance between the Sun and kth body

Xl’ Xg, X3 are rectangular coordinates with origin at
t@e cen?er of the Sun and sre rotetionally
fixed with respect to inertial space

mxj: J position coordinate of the vehicle

Rfd: J position coordinate of Iih body

>

)= ith component of vehicle accelerntion,

The first term in the brackets of {3) 1is a solution of {1)
and {2}. The second term is the acceleration of the Sun due io
t@e other bodies and is necessary vecause the origin of coorw
dinates, traveling with the Sun, is not fixed in inertial space
It is sssumed that the coordinates do not rotate, ' .

Planetary Position and Velocity

There remains the major problem of specifyi sitd
of the n-bodies as a function of time. S?ncefzh:gvzﬁzcgiylzéen
the missile with respect io selected bodies is usually desired
as an output, the veloeities of thege bodies with respect to
the sun must also be determined. The usual method is to store
tables of planetary position and to interpolate and numericallv
differentiate ai each point, or to store polynemials of plan- ’
etary position and to evaluate these snd their derivatives as
each point.

) The approach described herein is believed to lead to a
simpler and more compact program. Bguation {3) is rewritten
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vhere 3 = 1,2,3; and { = 1,2,...11; ife.
The only chenges from equation {3) have been the replacing
of the subscript m with 1 and the subscript O with o,
Equations{lk) is the total equation of motion of 12 bodies,
36 simulianeous 2nd order differential equatlions. If we asso-
ciate
o with the Sun { O
1 with the Earth {
2 with Mercury { ¥
3 with Venus { 2 }
L with Mars { &)
5 with Jupiter { ¥}
6 with Saturn { % )
7 with Uranus { 6 )
8 with Neptune (¥ )
9 with Pluto { B )
10 with the Moon { € }

)
@)
)

and

11 with the vehicle,
then equations (k) represent the equations of motion of the
principal bodies of the solar system and the one other body,
the vehicle, in which we are most interested. The subseript
¢ replacing subseript O indicates that the ceordinate systen
used has 1ts origin ab body ¢, the closest body te the vehicle.
This was done 1o minimize round-off error in distances that
would otherwise be prohibitive with the T70hk-T709 floating point
word length. Obviously, all three components of the acceler-
ation of the body ¢ are zero. Thus the system is a system of
order 65 (33 second order eguations ), Given sulteble initial
conditions, the fubure relative positions and veloeities of
each body can be determined by numerical integration of equa-
tions {#).

The compsciness of the program need hardly be discussed.
Although equations{l) represents 33 equations, by simple Lloop-
ing in the coding, it can be made Lo occupy only little more
space than the 3 equations (3) which all n-body space programs
mugt earry; in addition no tables or polynomials are required.
For & typical code, equations (3), for the missile alone, re-
quire 62 instructions, vhereas equations (4}, for the whole
solar system, require 100 instructions.

To keep the form of sinmulation of the gravitational con-
tribution to system performsnce compact is clearly attractlive,
for even though machines with 32,000 word memories are available,
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the simulation of terrestrial missions, including guidance,
controls, aercdynamics, thrusi, ete., requires a very large
percentage of this menmory. ExXtra-terrestrial systems will in-
elude all of these elements plus the astronomical problems.

Since astronomlical tables present only planetary positions,
initial velocities must be caleulated to commence the integration.
These calculations are space conswming, btuf need not be in the
memory during the simulation.

As to accuracy, note that the presently used ephemerides
of the five tuter planets have been obtalned by mumerical inte-
gration. WNote also that the vebicle with its close approsch
to at least one, and probably twe, other bodies will certainly
have the most complex orbit of any of the n-bodies considered.
If & trajectory program assumes, as 1s commonly the caese, that
the vehicle orbii may be accurately determined by a method of
rumerical integration, then the same integration method must
certainly sulfice for the simpler planetary orbits. Experimen-
tal verification of the accuracy will be indicated later.

The most important investigation for evaluating the feasi-
bility of this method is that of determining the reletive ma-
chine rumning time regquired for solving these many differential
eguations as compared to the more common practice of solving
the three differentlsl eguations of motion of the vehicle and
obtaining the positions and velocities of the planets by various
other means.

First it will be menticned that in no one mission 1s it
expected that all 11 bedies will have a significant effect on
the vehicle's orbit. 'The provisions for all these bodles were
inciuded 1o give the program the capability of simmiating a
variety of missions. In any particuwlar case, their effect may
be Tlsgged ocut on the load sheeits with a corresponding saving
of camputing time. For instance, in simulation of cislunar
trejeciories only the Earth and Moon, or Earth, Mcoon, and Sun,
are pormally considered; in a Mars vehicle design study, only
the Barth, Mars, Sun, and Jupiter would normally be considered.
On any particular run, almost no time is lost because the pro-
gram was written "generally". The order of the system to be
soived is then 6{r-1), vhere r=12 is the number of bodies,
ineluding the vehicle, being considered.

Iet us again examine the 3{r-l) equations{k). As noved
previcusly, the second term is common to all equations and
hence is evaluated only once. The caleuwlation of diksx which
involves a square root, is the largest time consumer in the
evalustion. But each dijy is used in & terms_(since it is in-
dependent of § and dgy = dki}' Each ka/dik3 sppears in three
terms., Thus the calculation of each term consists of one sub-
traction, one multiplication, one-third of & division, and one-
gixth of the calculstion of diRB- "he flow chart, figure 1,
shows the steps used in an evaluation of these equations, 8o as
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Figure 1.
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to take advantage of the above facts while mainisining a compact
code. (Figuratively speaking, those portions in solid boxes, or
in seolid portions of boxes, are necessary to solve only the ve-
hicle's eguation of motion, The dashed portions show what must
be added to evaluate the eguations of motion of the other bodies.
Since an integration routine may be assumed to be present for
integration of the vehicle's eguations of motion, these dashed
portions in essence replace all tables and table loock up, and/
or numerical differentiation, and/or polynominals and polynonial
evaluation. ) Care such as this has been important in attaining
low rupning time with these equations of motion, With this
technlique the time for the evaluation of all equations of motion
is about double that fior the equations of motion of the missile
alone. The time used for the mmwerical integration egquations is
almost directly proportional to the mmber of bodies considered,
but the time to evaluaie the integration formulae is only about
10% of the time required bo evaluate the egquations of motion.

tegration Technigue

In integreating spece trajectories, it is customary to use
some "nowpast-history” scheme of mumerical integration such as
Runge-Kutta to start the trajectory and then to shift to & scheme
requiring less iterations, such as Adams-Moulton, as soon as
the reguired number of points have veen caleulated. However,
fras 2 user's standpeint, the choice of print times should not
be limited to reguired calculation times. JIf the principal in-
tegration scheme requires equally spaced points, it would gener-
ally need restarting by some Runge-Kutta type scheme al each
gpecial print point. Further, expansions of the program will
most likely require discontinucus conirol programs. It was thus
felt that schemes of integration other than Runge-Kutta would be
of valug only if they could represent a major gain in running
time during that portion of the flight when they were being used.
The adaption of the Runge-Kutta method cutlined below, which was
made by O. Senda, formerly of Douglas Aircrafit Company, has
proved so efficient that the inclusion of any other integration
scheme has not to date shown any reduction in ruvmning time or
improvement of accuracy.

Searborough (2) gives the general Runge-Kutta eguations for
the numerical integration of a second order system as

k, = At f(tn, X s xn)

fa Fay il s kl
i nr ——— — q 4 —
k2 &tf(tnéz’xn“yexn*”g"kl’xn 2)
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k

) ot I S
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&% = at[a‘:n v F (kg + k, + 3;3)]

Axa%(kl+2k2¢2k3+kk)

where f indicates any of the equations of motion (k) and At rep-
resents the coampubing interval, Scarborcugh also points ocut
that if £ is independent of velocity, then kp = ki,

Because of the choice of rectangular components, which was
done primarily for engineering convenience, the egquations of
motion are independent of velocity. For this special case,
fourth order Runge-Kultiaz accuracy can be obtained from three,
rather than the normal four, cycle computation. This leads o
the interesting condition that the second order eguations used
are being integrated with less caleulation than is generally
required for first order egquations. That is, the time for solu-
tion of the &6{r-1) order system is about three-fourths of what
would normally be expected for a system with the same muber of
first order equations (& 2-1/4 (r-1) order system).

The method used to compute the time interval is a develop-
ment from reference {3). In thls approach a backward integra-
tion over the previcus interval is made and the difference
between the final and initial conditions is sssumed to be twice
the error in the forward integration. From the assumption that
the error in fourth-order Runge-Kutts integration methods is
proportionel to the fifth pover of the time Interval snd that
the coefficient of this term varles slovwly, the possible time

interval for any allowable position error may then be calculated.

In this method, baclward Integration is used for only one
component of one body. By methods more mesmeristic than mathe-
matical, it has been decided that the position component having
the biggest error and detemmining the time interval will be the
e corresponding to the largest veloecity component of the vehi-
cle or the Moon, which ever has the greater acceleration st the
moment .

When using this technique, very few Integration steps are
required for either lunar or Marilen missions, as will be demon-
strated in the examples below.

A self-computing time interval scheme is a necessity for
efficient operation with the variations of time interval possi-
ple in an exira-terresirial mission. This will be illustrated
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by exemple. However, the requirement that the integration
error be proportional to (At)” does require that the allowable
integration error be one order of magnitude larger than round
off error. Nevertheless, IBM 70k single precision floating
point has sufficed. As has been mentioned sbove, thig same
limit on accuracy would exist if only the vehicle orbit vere
integrated and planetary positions and velocities were cobtained
by any other means. One indication of eccurscy is provided by
integrating the equations of motlon of ihe solar system for 330
days end compering the resulis to the fmerican Ephemeris and
Nautical Almanac {4}, As an example, the error in the position
of Jupiter was 1650 nautical miles {0.7" error in arc) when the
integration was performed with & fixed 6 hour integration inter-
val and 1400 nauticsl miles {0.6" error in arc) when the more
rapid gelf-computing lnterval was uged,

Purther accurtcy checks are given below in the examples of
typical uses of the program.

Pogition date of the princlpal objects of our solsr sysiem
as & function of time are resdily svaliable, but velocities are
not. Both are regquired as initial conditions for the numerical
integretion, Velocities may be derived from the elements of the
orbits {i.e., inclination, semi-msjor axis, eccentricity, longl-
tude of ascending node, longitude of perihelion, sidereal perled,
and mean longitude at epoch, see figure (2) and Kepler's law of
equal areas (5}, Mean elements for any future time may be cal-
culated from simple formulas available in (€) and (7) end are
shown in Table l. For meny astronautical purposes, the mean
elements have been adeguate and convenlent. For more accurate
caleulations, osculsting elements could be used. Unfortunately,
these are not availsble for the whole perlod of astronautical
interest.

Numerlical differentistion of itables now availlable can pro-
vide extremely accurate velocities {error of less than 1 ft/sec
in the case of the Earth), but is more awkward than cbiaining
velocities from the orbital elements.

A more detailed explanstion of the mathematices involved in
this progrem is presented in reference (J}.

Analysis of Cislunar Trajectories

Studies of Earth to Moon tralectories conducted at the
Dougles Alrcraft Compeny have been based on the interplanetary
trajectory simulation, (8) and (9). This has allowed tbe re-
sults to include the proper gravitational effects of Earth, Moon,
end Sun. The effects of other planets on cisluner trajectories
were examined and found to be negligible {the effect of includ-
ing Jovian gravity in the caleulations is a displacement of .01
miles at time of impact on the Moon).
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Table 1. Elements of the Flanets' Orbits.
PLANET MEAN DISTANCE PERIOD ECCENTRICITY, & INCLINATION 1O THE ECLIPTIC
1. FARTH 1,000000 1.00004 001875040 000041807
2. MERCURY 0287099 $¢.24085 0.20541% 40000620 T T 10874 30T
3. VENYS 0.723332 ¢.61521 0.006818 —0.000850 Y 3° 23 371"+ 4f T
4. MARS 1.5238%1 1.88089 2003310 +0.000004 ¥ 10 81 1Yo 234 T
5. JUPITER 5.202803 11.84223 G.04B335  +0.000164 ¥ 19 18 314" — 2084 T
6. SATURN 9.538843 1945772 C055892  ~0.000345 ¥ 2% 290 AR - 1404 T
7. URANUS 19.581945 8401306 00€70  +00002 T 00 44 7097+ 247 T
8. NEPTUNE I0.057747 164 79405 00087 +0.00004 T 1t 46 4537 - 3437 T
¥, MUTO 39.51774 148.4307 0.247 $7° B 44D - 200 T
MEAN LONGITUDE OF
ASCENDING NODE PERIHELION PLANET  *+
0 161° 137 157 + 6IB9” T 99° 41" 48087 + 19402,748.137 T+ 1oE9r  TI
47T OB 43T+ 4284 1 FET 53 54" 4 5396 T 178 107 44887 +  518,104,654.80" T+ 10840 T
T5T &P 1% 4 2280 T 130* & g7+ 50567 T 342 46° 136"+ 210,669,342.88° T+ 1.1i4g 7P
AB® & 412 4 2704 T 334 13 47 & 66767 T I93° 46 51.48" 4+ SRPIGIIZTIAGY T4 11%adr 32
99T 26 24" + 3839 T 17% 43 157 + 57947 1 238 2 5732« 18,930,487.148" T + 1.20486" 17— 0.005938” T
PEZY &7 25U 4 3¥24C T Iv 5 54 4+ 705GV T 244 33 S176% +  A,404,635.58F T +1.16835" 100217
73 28 38" 4 IPYSH T $49° 3 07 + 5800“ T 744 11" 50.69° 4 §,547.508.2657 1 + 133074 T - 0.002176" T2
130* &8 537 + 3056 T 43" 50 O o+ 2400 Y g4 37 878" + 79L509.2917 T 4 1153747 1T 00021747 T3
T08Y 57T 177 + 40P T 227% 4B O + 5000 ¥ 137 38 0.007
1. JUUAN DAY NO. - 24150200
= 33573

*ASTRONOMICAL QUANMTITHES BY C. W, ALLEN
TEFRENCH NAUTICAL ALMANAC, CONNAISSANCE DES YTEMPS

AJOTONHYIE 13¥45 OV TUSSIW DILSHTIve KO WAISGdWAS Hisld

ASIOMNIL 13¥4S GRY INSSIN JESETIVE MO WAISOMRAS HLIH
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If initial conditions for a trial trajectory are chosen so
that the resulting path passes within several thousand miles of
the moon, these initial conditlons may then be corrected to reduce
this miss distance by a system which is built into the program.
This reduction smounts to sbout two-thirds of the miss distance
per step, as shown in filgure 3, for a typical case. The suto-
matic system holds velocity fixed and canputes correction to the
filight path angle and azimuth at each step. The technique uged
was simply to resclve the miss distance into the planes of the
initial zzimuih angle and flight path sngle and then to assure
that the required change in input values of these angles would
be the component of miss distance in their planes divided by
the distance to the Moon (see figure ). Vhen this guess over-
eorrected to the other side of the center of the Moon, & linear
interpolation was made for the next run. The originel method
was used agaln for the following run. The process was stopped
when the miss distance was less than a speciflied tolerance or
if any step failed to improve over the previous step by at least
this same tolerance., The compuler time reguired per trajectory
is approximately 1.2 minules. Decause of the manner in which
the integration interval 1s calculated by the program, this ma-
chine running time is essentially unaffected by moderate changes
in inttial velociiy.

The number of computing steps regquired was approximately
88 including recalculation where the original estimate of the
time interval proved too large. A typical caleulating time
interval versus flight iime plot is shown in figure 5. The
rapid change of time jnterval, shown here on & log plot, indi-
cates the type of rumnning time gains that are obtained by the
self-computing intervals as compared to the method of using a
step function based on the user's best guesses.

The final trajectory was rerun allowing double the error
in each integration step. The Ilmpact position varied by one
mile and the time of Impact by 7.5 seconds. A check sllowing
10 times the original ervor in the individual step indicated
that total error is linear with step error, i.e., the error in
the most accurate irsjectory may be taken to be about 0.5 mile
at impact with an impact Lime error of 4 seconds.

Application to Interplanetery Problems

For simmlation of interplanetary trajectories, it is neces-
sary to make a careful choice of initial conditions. 4 prelim-
Inary study using inferentisl technlques has proved useful as
& basis Tor the selection of initial conditions. The choice
should be made so that the vehicle trajectory wiil pass within
a few million miles of the target planet. If this is accom-
plished, the miss distsance can be reduced by a differential
correction procedure. Fach component of miss distance, 2, 18
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considersd to be z function of initiel velocity, Vo, flight
path angle, Yo, and azimuth of launch, A, . Fixed launch time
epd intercept time are sssumed. Thus, Fafth end Mars position
and orientations are determined. From the lnitial trajectory,
the partiasl derivative of each component with respeect to one of
the three input variables, e.g., veloclty, Vo, is determined by
rupning a trajectory varying only the initial velocity fran the
reference trajsctory by a small increment AV and then meking the

approximation

G&Xé - ij (?Oy AZO, VO + AV) “&X:} {70: AZO, VO)

87 AF y 4= 1,2,3

The partial derivatives with respect to flight path angle and

azimuth angle are obtained from two more similsr trajeciories.

If each component is expanded in Taylor Series about (yb,Az VO)
0}

& (¥, A;,¥) = &y (Yo AZO’VO} *“5'& (P-75) + 3& (AZ*AZOZ
av 8&Z

(V- e, 35 1,23

vhere all terms above the first order have been igmored, then
Tor impact the righthand terms must equal zero. The only un-
knowns are ¥, Azg, and Vg and hence the three equations may
be solved to yielg new estimates of these quantities, The re-
sulting miss distance, from the center of the target planet,
cen be reduced to a desired value {(but not less than the error
due to computational insccurscy) by repeated appiication of this
correction procedure. The smount of iwprovement available for
this application has been slightly less than one order of mag-
nitude on most of the trajectories considered to date, This
reduction is illustrated in figure 6 for a typical Earth-to
Mars flight. 'The fipsl trajectory is illustrated schematically
in figure T. Adéitional information aboult the finsl trajectory
of this series is contained in Table 2 and figure 8. fThe IBM
704 computing time required to obitain these resulis was approx-
imately twenty minutes, with each trajectory reguiring about
2.4 minutes of machine time to simulate the trajectory from
jaunch 1o point of closest approsch to targel plsnet. Five and
cne-half bodies were considered: Sun, Earth, Venus, Mars,
Jupiter, and the vehicle. The choice of velocity magnitude,
£iight peth angle, and azimuth es independent variables isg quite
arbitrary; it is only necessary that the three independent
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Figure 6. Convergence of the Interplanetary Hunting

Procedure.
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feble 2. Summary of Initial and Terminal Conditions and
Permissible Devietions for Partian Impact

L AUNCH DATE 1960 DECEMBER 12
LAUNGH TIME 4h 59m 47,898 4%
MAY ¢, 1941 -
MARS AT INTEICER TRANSFER ANGLE,  , DEG. 317
MAY ¥
1941 NOMINAL LAUNCH CONDITIONS
VELDCITY, Vo, FPS$ 56,314.02
FLIGHT PATH ANGLE, y,_, DEG. 89.8
AZIMUTH ANGLE, Ay, DEG, 29943506
IRCL INATION ANGLE, A, DEG. 1.16
TERMINAL CONDITIONS
VELOCITY AT IMPACT, v, EPS 23,344,463
IMPALT ANGLE, ¥, DEG. 4.4002

PERMISSIBLE ERRORS
DEC 12, 1960

VELOCITY AV, FPS 16.25
ELIGHT PATH ANGLE. Ay, , DEG. 0.00146
T AZIMUTH ANGLE, AAy, DEG, 0.33
asTRONOMICAL UNIT, BAU 5 0.0245
_ AU
TRANSEER TIME, t, DAYS 146.5

Figure 7. Typical Interplenetary Trajectory.
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varisbles descrite the initial velocity wvector. Time interval
versus time is indicated in figure . It is to be noted that
the camputing interval used is determined as an integrsl part
of the progrem from an input sccurecy reguirement, Yhis allows
for the use of small Increments in regions where gravitational
forces sre large (neer planets) and large increments where

3500

gravitational forces are small (far from planets). Accordingly,
much of the 2.4 minutes per trajectory is consumed in calculsting
the trajectory near the launch and target planet. The net result

I8

is that usage of the program for simalating trajectories of much
grester duration does not require apprecisbly greater computation

time. The total mumber of points required for the iyplcal tra-
Jectory was 99.

000

As with the lunsr csbge, trajectories were run with larger
allowable errors. These indicated that the basic run's Impasct
position on Mars had sbout 200 nautical miles of uncertainty due

2400

to integration error. The time of £light had an uncertainty of
about six mumbes due to the same cauge, A similar check atf a
fixed time shortly before impact showed an uncertainty in missile

position with respect to the Sun of 1070 miles, vhereas the pog-
ition of Mars checked within 13 miles. Since all programs must
integrate the missile trajectory, it is fTelt that the much lar-
ger error in missile position supports the contention that no

0900

accuracy is lost by obiaining planetary positions by integration
of the equations of motion.

1660
TOME AFTER LAUNCH  (HOURS)

N\ g Extensions for Total Mission Shmulation
{ - This mechanization of the n-body provlem has been designed
0 be combined with existing ballistic missile trajectory
\ @ methods to provide & means of simulating & total space mission,
N &

Yelocity end Distance of Typioxl Martian Trajectory.

A typleal simdetion of the flight of a multi-stage long range

missile, with guidance, on a roteting sphercidal Earth, proceeds
9 as follows (see figure 10}:

14D

g © The veriations of stmosphere and gravity with sliitude
/ ) n and latitude are specified for each case. From these and the
¢ & statement of initial missile position, the enviromment in which
7 A the missile is operating may be evaluated. Adding the missile
T T e specifications and initial velocity, the orders that would be
e 2 g S * o issued by the guidsnce may be caleulated and the accelerations
- - due to anercdynamics and propulsion may be evaluated in misgile
544 0000 A TREDCEA JHEINIDOTEH coordinates, Then typically these may be rotated through the
OW N O000B0GET T HINYE WO IoNYIG inertisl plaiform coordinates to a set of coordinates located
W N G00°000" 1} Ty pg WORE IDNYISK

at the center of Barth {which sre considered inertial)}. At this
point the gravitational accelerations are easily added and the
result rotated to coordinates at the surfece of the Earth (with
due allowance for Coriolis and Centrifugal accelerations) where
they are integrated for new velocities and positions as would
be seen by an observer oo the Earth.
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O COMPRUTED Ar WAS USED
[ COMPUTED At YIELDED TOO LARGE AN ERROR AND WAS RECOMPUTED
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Figure 10, Relation Between long Renge Missile and
Total Space Mission Simulation.
Computing Time Interval History for Typical

Interplanetary Transfer.

Figure G,

312 313



FETH SYMPOSHEA ON BALLISTIC MISSHE AND SPACE TRORNOLOGY

The changes 10 such a ballistic misslile program to adapt it for
a total similetion of & space mission would require:

{1) Specification of the atmosphere of each planet.

{2} Replacement of the spherical Earth term of the gravity
caleulation in the missile simulation by equations (k)
in order to lnclude the n-body effects and remove the
assumpiion that the center of the Earth is inertially
fixed.

(3) Additions to the guidance section for terminal and
mideourse phases.

Obviously, forces that predominate in some portions of flight
are insignificant in others. An efficient simulation will drop
these out wherever possible, and will use four cycle integration
vhere necessary and the simplified three cycle integration when-
gver possible.

Conciusions

It is concluded:

1. That integration of the eguations of motion of the
solar sysiem is & compact way of obtaining planetary
positions and velocities as & function of time Tor
use in the vehicle equations of motion.

2. That the errors in planetary coordinates introduced
by this method run one to two orders of magnitude
less then the error in vehicle position, and hence,
are inslenificant in all applications.

3. That the machine time reguired to introduce the n-
body's effect on the vehicle in this manner are ocom-
parable to those of iable-locok-up programs.

4, That when the n-body problem is handled in this way,
expansion t0 2 more general simulation of the entire
mission is guite simple and does not lead to as large
& program as other spproaches do.
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