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PERTURBATIONS OF THE COORDINATES

I. Introduction. In Chapter X1 has been developed a method of
determining the motion of a point mass moving under the disturbing
influence of other point masses, around a central point mass so massive
as to dominate the system. In this method, variously known as the
variation of elements, the variation of parameters, and the variation of
arbitrary constants, the six continuously varying esculating elements of
the disturbed body are expressed as sums of trigonometric series, the
arguments of which are either linear functions of the time or linear
functions of some other variables connected with the time by the
formulas of elliptic motion. In the present chapter will be developed
another method, in which the deviations of 2 body from a purely elliptic
orbit are expressed as perturbations of the coordinates which have place
in the ellipse. The method is analogous in many respects to Encke’s
method for special perturbations, discussed in Chapter V, but here we
shall discuss the general perturbations of the peolar coordinates as well
as those of the rectangular coordinates,

Although the method of variation of arbitrary constants differs sharply
in principle from the method of perturbations of coordinates, it is in
fact possible to combine the two methods info one, in various ways.
We shall discuss the method used by Newcomb for the four inner
planets, where the eccentricity, perihelion, inclination, and node are
conceived te vary strictly proportionally to the time, and the periodic
perturbations of the longitude, latitude, and radius vector, being applied
to the corresponding coordinates in this varying ellipse, give the actual
position of the planet,

Finally we shail describe Brouwer’s method, which is better adapted
to the numerical calculation of disturbed rectangular coordinates than
any other method of the classical planetary theory,

2. Differential equations. We begin with the differential equations
of relative motion, discussed in earlier chapters, considering one
disturbed planet and one disturbing planet, since it is easy to see what
to do when there are more. Let it be proposed to find the perturbations
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of a planet ?}aviag the mass m moving about the sun having the mass
unity and being disturbed by another planet having the mass m', Writing
p for B2 (1 + m), the equations of motion of m relative to the sun are
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where the rectangular coordinates are referred to any fixed plane passing

through the sun, % == 22 4+ 4% 4 22 and R, the disturbing function,
has the expression

Ro= B (s — o + (3" = )t o (5 2 SEEIYEEH
' .
If the longitude, reckened in the reference plane, is denoted by v,

the radius vector by r, and the latitude by B, then in terms of these
three variables the differential equations of motion are
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R = k'’ [(r"‘ e 207" o8 H -4 rj 11 7 cos H] .
N rer )
where
cos H = cos B cos B' cos {v — ¥/) + sin Bsin B', (5)

Itis gt‘tneraiiy simpler to retain the rectangular coordinate z instead of
the latitude B, and adopt r and v such that

X A1P—2heosw, ¥ = A/7? _ ztsin )

Let us now suppose that each coordinate of the disturbed planet is
separated into two parts such that

% == xy + Bx, ¥ == Yo - 8y, z == 2y 4 Bz, {h
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the first of which satisfy the differential equations
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where 3 = xf - y§ -+ 23, and the parts 8x, 8y, 8z are of the order of
the disturbing forces.

It is evident that certain functions of the time ¢ might be added to
Xy, Yor %o Without their ceasing to satisfy the differential equations (8),
and that then, in order 1o represent the position of the planet, the same
functions would have to be subtracted from 38x, 8y, 82; thus the
separation of the coordinates into two parts is, to a certain extent,
arbitrary. The indetermination must be removed by taking for the
constants of integration values accordant with the sort of elements from
which x,, ¥, 2% have been obtained. If these elements are osculating
at a particular epoch, then it is evident that the constants of integration
must be determined so as to cause 3z, 8y, 8z and their first derivatives
with respect to the time to vanish at the same epoch. On the other
hand it is often advantageous to use mean elements so defined that
certain terms of the perturbations vanish identically, and in this case
the constants of integration must be determined in accordance with the
definitions of the mean elements. It will be seen later that it is possible
to associate each of the six independent constants of integration with
one of the six elements in such a way that the perturbations of the
coordinates are reduced to their smallest possible numerical values.

We now write

r = rg + O, 9
4R éR aR
G6R . @R, | OR
..._."---é;w fw"%"d%"f"“ggdg.

The last expression is the differential of R when the coordinates of the
disturbed planet alone vary. We also have

aR aRr 8R &R
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which is evidently correct if, in the first member, R is expressed in
terms of r and any two other coordinates which make afr, yir, &
independent of 7,

Multiplying (1) severally by 2dx, 2dy, 2d3, and adding the products
and integrating, we have

T L

where w/a is the arbitrary constant of integration; it is plain that we

are at liberty to suppose that it is such that the equation of two-body
motion,

ol () (5 -2 etmo

is sau:sﬁed; if there is any residual constant it must be supposed to be
contained in 2 [dR. In terms of polar coordinates (12) becomes

(%)3 b 7% post B (%)2 +7* (%?)* - g? +§ = 2f aR. {14y

Again, multiplying (1) severally by x, v, #, and adding the products,
we obtain, with the use of {11),

N Y T
wmhY gt rE T (13)
or in polar coordinates
dr L ogdeyt  dBYE 48R
raE et Blgr) = () = n (16)
Adding (16) to {14) gives
1d% u p 2R
iwa-{?m;---kgmzfdﬁ’+r»5;. 7
If from this is subtracted the equation
1dny p  p
i " ta=0

then, making use of (9,

A . R 1 &y u(Srp
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"The two final terms of the right-hand member of t.hig. equation are of
the order of the square of the disturbing force; if this is to be neglected
they can be omitted, ‘

By a similar process, (1) can be transformed into
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For brevity we now put
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Then the differential equations take the form
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Since w/r} is a known function of ¢, and the O are ali 0? the. order
of the disturbing force and consequently in the first approximation are
known in terms of 4, these equations are linear with known final terms.
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3. Integration. In order to integrate (2.) let us consider the linear
differential equation without final term

dig  uo
E@*%‘*f&;qme- (22)

According to the theory of this class of differential equations, the value
of ¢ has the form
g = Kig; -+ Ko {23}

Ky and K, being the arbitrary constants, and ¢, and ¢, any two particular
solutions which are independent of each other. Then there must
necessarily exist the two equations

v

e =0
(24)

digy  wo
g T E gy = 0.

By the elimination of pfrd from these is obtained

dig &%
U5 "'E'}"ég - dlgl = (. {25)

This is an exaet differential; integrating,

T % gy % == Const. 26}

The constant is arbitrary and, the value zero excepted, may be taken
at will; for simplicity we take it equal to unity.
Taking now the more general equation, with a final term,

dq g
) + “"’3,{; g =0 @7
let us eliminate /73 from this and (24). We get
d% d%y
31 }:(;:E" - g dtzl = Qgh
dq dqy

?s“g;g' - 9'“3;{“ = Oy,

and, integrating,

d
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From these we obtain, in view of {26),

g = Ky -+ Kygy Qz.[?ith - ?zf?zQ dt,

) (2%
~ &, ‘h + K ff‘jz + fﬁg ¢ Qdr — 4. O 2t

The second of these equations may also be derived by differentiating
the first. The arbitrary constants K; and X, may be regarded as
contained in the integrals [¢,0dt and fg,(0di; hereafter we shall write
the equations in this way. :

Applying these results to {(21) we have

rodr =g [@Q, dt — ¢ [ 00, dt,
Sx =g [ Gedt — a1 [ . 0udt,
=gl add—alaudd
S =g Q. dt—qfauQd

(30)

Since 72 == x2 -1 y* 4 2% these equations must satisfy the relation
. 1 . 1
Tt = xdx + ydy + 287 + »2(5.1:2 wj By? b §2?) — 55 (refr {31}
¢

It is, however, necessary to empioy all the equations of (30), since in
proceeding by successive approximations, as we are obliged to do, we
cannot get the values of 0, Qy, 0, until 8r is known. These equations
contain, in the general case, nine arbitrary constants: the one added
to the term 2 {dR in O, and the eight introduced by the cight integrals
of {30). But these eight will be reduced to six constants independent
of each other, by the condition {31); and the constant added to 2 [dR
wiil be determined as a function of these six by the condition derived
from (12),

dx, dbx , dy, dSy dze dBx
PR Ry S A R L

- f ar ~ L[(B) 1 (2], 6

In the case of osculating elements all the constants are determined by
making each integral expression vanish with £,

R
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4. Hansen’s device, There is a remarkable device, due to P. A,
Hansen, for reducing the right-hand members of (30) to a single integral
expression, thus avoiding the difficulty, otherwise encountered in
calculation, that the perturbations come out as the small differences of
large numbers. The factors g, and g, outside the signs of integration
may be moved within the signs, if it is agreed to regard the ¢ that they
contain as constant in the integration, As this ¢ must then be kept
distinct from the £ of the quantities already under the sign of integration,
we write it 75 and to denote that any quantity that is a function of ¢
has its ¢ changed to r, we enclose it in parentheses. Thus making

= (g} 1 — (1) 4o _ (33)
we have the simple expressions
rdr = [NQ, dt, Sy = [NQ,d,
= [NQ,dt, 8z=[NQ,dt

(34)

After the integration is accomplished 7 will be replaced by ¢ Since r
is regarded as constant in the integration, an arbitrary function of » must
be added to each of these expressions, which, after » is changed to ¢,
becomes an arbitrary function of 2, These functions must in each case
be determined so that the expressions (34) coincide with (30). However,
it will not be necessary to consider these arbitrary functions if it is
agreed to take the integrations between the upper limit ¢ itself and a
lower limit that may be any constant. In the general case, then, an
arbitrary expression of the form

Ky + Kogo

must be added to each equation. In the case of osculating elements,
if the lower limit is taken at zero, this arbitrary expression vanishes.

Equations {34) may be exhibited in the form of definite integrals;
thus, since N is & symmetrical function of g and {g),

o f : NO)dr, Sy = ““J: NQ,) dr,
- f NQ)dr, 8w = — f N (35)

where N may be regarded as a factor whose value is virtually zero, but a
part of the time involved in its expresszon is regarded as constant in
the integration.
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5. The factors q, and q;. We now determine the values of ¢
and ¢,. If we put

# o= ;J.(fas, ?!t*{‘*ﬂ'*‘-—f“w“‘ﬁ“’ean“’ {36)

where 7 is the mean motion, & is half the major axis, e is the eccentrieity,
¢ the mean anomaly at the epoch, and u the mean and eccentric ano-
malies of m in the ellipse that is adopted as the first approximation,

then

" el -—ecosw, 4= fﬁ-du. (37
@

Equation (22) may then be transformed into

Further, if # is made the independent variable, it becomes

d . dg . 18
(}mecosu)?:%wesmu$+qm& {38)
Differentiating this, and afterward removing the useless factor I —ecosy,

we get .

d
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the integral of which is
g = K, cos ¥ + K, sin & -+ Ky

In order that this may satisfy (38) we put K, = — K,e, Hence the
complete integral of {(38) is

g = K{cos 4 — €} + K, sin u. (39
Tt is evident now that we may take
g, = k{cosu — €} gy = Rsinw,

k (not.tc be confused with the Gaussian cansz_ant) being adcpz&dhso
as to satisfy (26). When these values are substituted it is found that

g? = 1/n. Consequently,
g = Vanju (cosu —~ e} = v/anjp 74 c08 £,
= ASanju(l — €2} tg sin f,

{40)

Gy == ‘\//;s?;f-; sin u
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where f denotes the true anomaly of the disturbed planet in its elliptic
orbit. Substituting these values in {33) we get the two expressions for N,

N oz EEE {sin [{) ~ 4] ~ e sin (1) -} € sin %}
S ()
= e e resin ) — f1.

If t is retained as the independent variable, either of these values may
be used in {34). But in some cases it may be desired to integrate with
reference to u or f, and since

2

Fy s
ndt == - du == oy paare df, (42)
we should have
Nt = &0 {sin [{u) ~ u] ~ e sin (&) + ¢ sin v} du
. (43)
= W(’o) risin {(f) — f] df.
In the latter case the expressions for the perturbations become
i .
or = WJ‘Q’ 73 sin [(f) — f1 df,
- To i [ F3

by = oty [ 0 sl 11

Ty

b = ol [ @ rtsin () — N1

These equations are entirely rigorous, as no terms have been omitted
in their derivation; but in the practical application of them one is
subject to the necessity of deriving the values of the O in terms of the
independent variable by a series of approximations. In the first of these
the O will be affected with errors which are of two dimensions with
respect to the disturbing forces; in the second with errors of three

- dimenstons; and so on. One advantage these equations possess is that

the factors by which the O must be multiplied prior to the integration
are pure functions of the coordinates in the ellipse of the first approxima-
tion; they remain identically the same, however far the approximations
may be carried out, A similar advantage is possessed by the equations
of Brouwer's method, discussed later in this chapter.
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~ The set of equations (44), although very symmetrical, present the
inconvenience of containing one more relationship than is necessary.
Hence for the second and third we shall substitute a single equation.
From (1) is deduced

dy  dx : R @8R
x»a-zmym—mﬂ—g—f(xwé;wyaw)dt, (45)

where the constant H is not to be confused with the H of (4), and
in terms of polar coordinates

du 2R :
rPcos?h 7= H 4 f S 4t, {46)

If we prefer the rectangular coordinate z to the variable B, (46) may
be written

do . PR
{r? — 5% i H 4 f Fo . 47y
H is a constant such that
dy, dx do,
g TIg = G =H. “8)

It can be shown that the numerical value of H is given by
H = vpa{l — ¢ cosi,

where ¢ is the inclination of the plane of the clliptic orbit to the pian-e
of xy.

Supposing © = v, - 3v, the following equation is obtained for the
determination of v from (47), putting O, for 2R/ v,

Svm[s fz.‘?;Qvaftwvlww'.;f‘w<:r:;ss*z'(1’%_”{’)8”#(2'”1"3':'}8:{I an dt, {49}
1= \ 72 TR

By substituting for ndt either of its values from (42), we can make u
or f the independent variable. With the latter procedure (49) becomes

- oo Ar 1) O e (5 4 2) B2y 4
aydﬂfﬁsgvdv#m; e o) Lt do. (50)

. Like the equations {44) this is an entirely rigorous equation, no terms
having been neglected. Together with the first and last equations of
(44) it suffices for the complete solution of the problem. The equation
is also perfectly general since no restrictions have been put upon the
position of the plane of xy, from which the coordinate z is measured.
In the case where the plane of the elliptic orbit of reference is adopted
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as the plane of xy, (50) is somewhat simplified. In that case { == 0,
% = 0 and 7 = 8z; thus

e B2t 3
g dr 8 g (51)
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6. The superfinous constant. In using the first and last equations
of (44), and {50) or (51), seven arbitrary constants will be introduced,
three in the equation that determines 3r and two in each of the others.
One of these is superfluous and must be determined as a function of
the rest. When we are deriving perturbations to be applied to cooerdinates
given by osculating elements the difficulty is readily overcome; we have
only to add to cach integral a constant that will make it vanish at the
epoch. But when the perturbations are 10 be added to coordinates
derived from mean elements, the readiest methed is to suppose that the
constant added o de is the superflucus one. Then, as stated before,
Eq. {32} will determine this constant in terms of the remaining six. In
developing both members of this equation in periodic series it will
be necessary to retain only the nonpericdic terms. The nonperiodic term
of [dR must be the same as that of

Toar S gy gl @) )]
+ -}:? &r.

1f the plane of the reference ellipse is taken as the plane of xy, we shall
have dip/dt = 0, and one of the terms of this equation will disappear.
Suppose that this i1s done, and that the coordinates chosen for defining
the position of m are v, v, and 3z; then {32} can be made 10 take the form
d 1( dy dﬂa)( d

14 A dv %
.-zm_d._t(y—-}«re) S‘L’—{-‘ng}%——;;;af

g talrg trg)lng |
_ Lydondg , 10t oddx® (52)
““f‘”* +5 (5 - tsala )

We can make v, the independent variable in place of ¢ by substituting
dt = r¥Vup df, which gives

1d d R d . dug 5
ian{:'»F«r{,}Ejm;Sr4«3(:'2}“%---%)(?{,33?}—1»3};6?)+E8r

=% ar L
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If we retain only terms of the first order with respect to disturbing
forces, this reduces to

4

necessarily the one to be preferred in numerical applications. The use
of the eccentric anomaly renders the series more rapidly convergent,
an important advantage when the eccentricity of the disturbed object
is large; on the other hand, use of the mean anomaly facilitates the
calculation of pesitions of the disturbed obiject, and simplifies the process
of integration. However, the modifications to be made in the formulas
when either of the last two variables named is to be employed are
readily perceived.

Since, when we limit ourselves to the first order of disturbing forces,
elliptic values are to be substituted for the coordinates in the functions
{3, there is no need to make a distinction between the elliptic and the
rigorous values, we shall omit the zero subscripts. If we put

2
§v+{2+ecosf)8r+esinf§f8rm%fd}i. {54)

The difficulty with the superfluous constant can be avoided by
employing [dR instead of the function Q,. Subtracting twice (18) from
(52), and employing the equation given by elliptic theory

for reducing the result, we get

y? r &R
dvy  d d_ dr 4 OR 14 o, pdt o e O, w12 [ AR 1 |
rzw}}.;i-EE&Umm(ﬁ8r+2re—a?3r)w3j.dk4~2r pe %Zdzg& r s P[ ) 6r]
rt OR
¥ d‘i’} ? 1 d dv df)ﬁ .......}.. l"‘Si i%g Y-_mm_,éz,,} {58}
5 (G) @ =0 — g Hoe (F 425 — s Talz 7) 69 e
No terms have been neglected in this equation; if we limit ourselves Z == ey

+ first order of disturbing forces it takes the simpler form
fo the first order o s 4 the first and last of (44) and (51) reduce to

dr d éR
: E;Sf+2r3?3rmf(3jm+zf~5;)dr ” Sr = [Tsin[(f) —f14f,
o s .
a’n /1~ et : Svmf[defWZ%t]df; {59)
If we make f the independent variable, this equation becomes 5B = [ Zsin [(f) — 141,
2R ]
Sy w ~2~(E 4 C{)Sf}g—ﬁf + Ssinf - 8 — Ef (3de + 2r ja;“);{“f“:{j?;f'm“g?jw By referring to the value of R in (2} the expressions for ¥ and Z are
g 4 ? # (57 readily seen. In order to find T, put
If (55), (56), or (57) is used in place of (51), the number of arbitrary ¥ - ftfﬁ ' )
constants involved in the expressions for the perturbations will be six, _ : up or
the proper number, The first-mentioned equations also have the advantage Then it is found that
that 87, as it appears in the expression for 3v, is free from the sign |
of integration, which is not the case with (51). Moreover, in expanding ;?—dR o g3 [% sinf- X + Y] af. 1)

the quantities to be integrated in periodic series, the determination of
the coefficients of terms of long period to additional accuracy is limited

: R Thus the equations for the perturbations of the first order are
to the single gquantity 4R.

Sr mf[x+2ﬁjr—s(§s;nf-x+Y) df ) sin (1) ~ 14,

Svmf[_]"YdfMZ%{] &, 62)
58 = [ Zsin [(f) — 1141

7. Perturbations of the first order. We give here the formulas
for the case where the true anomaly f is employed as the inéependef'zt
variable, because of the simplicity of the analytical expressions. It is
not to be understood, however, that this independent variable is
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The equation (57) can be substituted for the second of these, but if
this is done it will be well to use the function [dR instead of Y. 1§
the coordinates 7, ', 2, 3 are eliminated from R by means of their
expressions in terms of the true anomalies f, f', then R becomes a

function of f and f only, and

J.dﬁmf%?.df.

This equation is also true if f is replaced by ' or I'. But in order
to make the various expressions integrable with f as the mde;‘:ende‘nt
variable it will be necessary to eliminate I' by means of the identity

n
We put then
L AP
§ o= —fte <
and thus
L &b
Vo @ ——(f— 1) T

With R in this form we shall have

‘r B8R 2
J.dRmR—»%j e

0 BV — e
and
" _ R
T T e

If, however, Eqs. (62) are employed, Eqs. (2}, {4), and (5) show that

the expressions for X, ¥, Z have the forms

ki’ | 1y, , , Rept' v®
Xmuf:l;—r4(zﬁw;;§)?' cos B COS{?) w{f)'—““@“z—s',
R el Ay B sin e —
Y s o y (d" r’3) cos B sinfo’ — o),
- k2m’ 4 1 ' :
A 7,.‘:5“ (53 b ,3) r'sin B 5

in which
4% = g% g p'% — v’ cos B cos (V) — U},

(63)

(64)
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When the variable ¢ of Eq, (65) is employed in treating perturbations
f the first order, the periodic development of each of the functions
o be integrated, either with or without previous multiplication by the
actor sin [(f} — f1, will have the form

Bs [Kih cos (i +5°0) + KL sin (F +59Y] 1)

here j and § are positive or negative integers (including zero), but
ne of them may always be restricted to positive values only {inciuding
ero) without loss of generality. When this expression is integrated with
as the independent variable, the result is

330 i) [Ksin (G 779 — Kifeos G +70)] . ()
here we adopt the notation

(3237 == 7= (73)

. except for the absolute term, which being integrated gives K{7} f.
f the expression is multiplied by sin [{f) — f] before integration, the
esult of the integration is

(67) | s i G =10 G+ LiNIKS, cos (Jf 4578 + KT, sin (jf + j/6NH{T4)

except for the terms having j == 1, /' = 0, for which we have

(68) g (KL sin f — K{%cas ). (75)

-The remaining terms that are proportional to cos f and sin f may
- be omitted as they combine with the arbitrary expression that completes
the integral,

At this stage we might proceed to the analytic elaboration of per-
-turbations of the second order, which are increments to the perturbations
of the first order and are obtained by calculating the increments of the
disturbing forces on the supposition that the planets move not in
ellipses but in ellipses augmented by perturbations of the first order.
The resulting developments would not, however, be well adapted to
numerical calculation, and we prefer to postpone them until we treat
a method not subject to this disability. In the meantime we proceed
to further consideration of (78).

(69)

(70}



