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Abstract — Zusammenfassung — Résumé

An Analytic Proof that the Hohmann-Type Transfer is the True Minimum Two-
Impulse Transfer. Although it is commonly assumed that the Houmann transfer is
the optimum two-impulse transfer, an analytic proof has never been given. Tinc [1]
proved the conjecture for the “nearly HonmanN-type’ orbit. An analytic proof of
this conjecture in full generality is presented in this paper.

Ein analyliseher Beweis fiir den minimalen Zwei-Impuls-Ubergang entlang der
Hohmann-Ellipse. Es wird gezeigt, dafl die Honnmann-Ellipse der optimale Zwei-
Impuls-Ubergang ist. Ein analytischer Beweis wurde bisher noch nicht gegeben,
Ting [1] untersuchte diese Vermutung fiir Honmann-dhnliche Bahnen. Ein analy-
tischer Beweis fiir diese Vermutung wird in dieser Arbeit in voller Allgemeinheit
gegeben.

Une preuve analytique du earaclére I‘Iﬂllllllﬂl d'un transfert du type de Hohmann.
Aucune preuve analytique n’a été avancée jusqu'h présent pour établir le caractére
minimal du transfert du type HouMmann pour le cas de deux impulsions. Ting [1] a
donné une preuve pour une orbite quasi-Honmannienne. Une prenve générale est
présentée ici.

Infroduetion

The present paper is motivated by the concluding paragraph in TN [2],
which reads: “The optimum solution of transfer discussed in the present paper
will be the optimum among all possible trajectories instead of among the ‘nearly
HouMANN-type’ trajectories, if it could be conjectured that the optimum two-
impulse transfer of [1] is the true optimum among all the possible two-impulse
transfers instead of only among the ‘nearly HouMANN-type’ as shown in [1]. All
the available numerical results agree with this conjecture. Recently, HORNER [5]
extended theworkby MuNick, McGiLL,and TAvLoOR [6] and verified this conjecture
for non-intersecting orbits. Mathematical proof of the conjecture for intersecting
orbits would bring the problem of optimum transfer between two elliptical orbits
by impulse, to a close.”

In this paper a mathematical proof will be given verifying this conjecture.
The proof will cover both intersecting and non-intersecting orbits. By the
HonMANN-type transfer between two orbits we will mean that the two orbits and
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3 jectory are co-planar, with the same major axis aml oriented in
:{:2 ::?11;52‘;]51;&]11‘;‘1'13 tbfmt the a]pogce of the transfer trajectory coincides \\"l?]l lt;IInE
of the orbit with larger apogee, while the perigee of the trans[pr tra]ectﬁqt
coincides with that of the other orbit. By optimum transfer we will mear} ?
the total velocity change (sum of the absolute values. of the various velocity

changes) will be a minimum.

Background

i or [4] in this paper. In (4]

We will use the results and methods of our paper [ ;
we proved the result that even if orbits 1 and 2 are co-planar and can intersect,
then the optimum one-impulse transfer at their point of intersection is great;:r
than if one rotated the orbits and made a HOHMANN-type transfe'r between the

two orbits.
In [4] we quoted a Theorem of WHITTAKER [3, p. 89].

Whittaker Theorem

It can be shown that the velocity at any poin_t on an elliptic orbit can be
resolved into a component y perpendicular to the radius vector, and a component x
(less than y) which is perpendicular to the axis of the conic, each of these compo-

nents being constant.

Curves of constont &
g consiant apagee

Curves of conston! k
ang consiant perigee

Fig. 1. The » — y plane

The components x and y of velocity uniquely determine the orbit; in particular
one can show

(ur) = y* + y xcosf ' (1)
where * ‘ ‘
;= universal gravitational constant times mass of earth

r = distance from center of earth
/ = true anomaly.

The Houmann-Type Transfer 3

We [urther will use the notation

k= pt/7perigee = ¥+ x (2)
! ‘:ﬂf"amgm et 3’2 —Xxy {3)
Hence:
= VETR ®
x = (k—1)])2(k + I (5)

The curves of constant % and I are hyperbolas in the x, v plane (see discussion
in [4]), oriented as in Fig. 1. When we speak of one-impulse perigee to perigee
transfers between orbits 1 and 2, then (1, y,) and (x,, Vo) must be on the same
constant & hyperbola; otherwise they would not have the same perigee distance.
Similar remarks apply for apogee to apogee transfers and constant [ hyperbolas,

From the definition of ¥ and x in WHITTAKER’s Theorem one has velocity
at perigee = y 4 x, velocity at apogee = y — x.

Proof of Basie Assertion

We will now’ begin our discussion of transferring between orbits 1 and 2 by
means of a third orbit—4. (See Fig. 2.) We assume all orbits have a common
focus, and are co-planar. Without any loss of generality, we will assume that
of orbits 1 and 2, orbit 2 is the one with the largest apogee, i.e., (ra)e > (ra)y
or I, > 1,

Case 1. (ra)y < (ra)g 0 1,21,

We show in this section that the Houmann transfer orbit is minimum in
this case.

¢
a
Fig. 2. Intersecting ellipses with Fig. 3. Intersecting orbits
common focus lined up

Here we can proceed, partially using the logic of the arguments in TING [2],
Sections II and ITI but not completely, since TING actually assumes the
HonmaNN-type transfer is a minimum, and this is just what we want to prove.

Since orbits 4 and 2 intersect, we can apply the results of [4] to say that
the one-impulse transfer between them will be minimized by a HouMANN-type
transfer with orbit 5 between apogee of 2 and perigee of 4. (See Fig. 3)

Likewise since 4 and 1 intersect, their one-impulse transfer will be minimized
by a HOHMANN-type transfer orbit 3 betveen them (sce Tig. 3), but here we do

1*
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not know which of 4 and 1 has the larger apogee, only that both their apogees
are less than that of 2. Similarly the perigee of orbit 4 may be larger or smaller
than that of orbits 2 and 1. An x — y plot of the various possibilities for orbit 4
are shown in Fig. 4. [The possibilities are designated by 4, 47, 471 4111 41V 4V,
in the Figure.] Point 6 represents the HoHMANN-type transfer orbit between
orbits 1 and 2; note that our discussion does not depend on whether orbits 1
and 2 intersect or not. IFurther, note that since we have reduced the total velocity
change by introducing the orbits 3 and 5, if we can prove that even so the resulting
total change in velocity is greater than that of the HouMANN-type transfer
between orbits 1 and 2 we have proved our assertion. We will do this below.

Before proceeding we will need some estimates about velocity changes. Thus,
in Fig. 1, let orbits 4, B, C, D, be on hyperbolas of constant & and / as shown in
the Figure, and let V,p(Vpc) be the absolute velocity change in making an
apogee to apogee change between orbits 4 and D, (B and C); and V,5(Vpc)
be the absolute velocity change in making a perigee to perigee change between
orbits A and B (D and C).

Then we have the estimates

Vap+ Vpe>Vas+ Vie (6)

Vea+ Vap>Vec+ Vebp (7)

Physically these two inequalities say that in a perigee-apogee transfer it is

always better to go to the apogee of the orbit with the largest apogee, rather

than its perigee. Thus, they follow from results in TinG [1]). The method of
proving them in the present framework is as follows: 5

Writing (6) out in terms of y's and x's it is equivalent to
(xp — x¢) > (x,. — Xp)
but this is just Estimate (2) of [4].
Inequality (7) is equivalent to
Wp—e) >AY— )
which in turn is equivalent to showing that H'(k) < 0 for H(k) = |/(k + 1,)/2 —
— V(?E + 1,)/2 for I, > l,, which in turn is obvious.
From (6) and (7) it follows immediately that

Vap+ Voe+ Ver>Vasn (8}
Vea+Vap+ Vpe>Vae (9)
Vep+ Vea+ Vap>Vebp. (10)

Returning to our main line of thought, we wish to show that any intermediate
transfer to an orbit 4, 47, 47 etc.,, always takes more impulse change than a
HouMANN-type transfer between orbits 1 and 2. We will consider three pos-
sibilities; the otherscan be proven by some obvious modifications of our reasoning.
Subcase 1

Show

Vis+ Var+ Vs + Vea > Vig + Vg

Proof: Since Vg = Vi3 + Vg and Vi, = Vig -+ Vg, as follows by writing

out these expressions in terms of y’s and «x’s; this inequality is equivalent to
Vas+ Vas+ Vg > Vg
which is just (10).

The HoumANN-Type Transfer

Subcase 2
Show
Vis+ Vi + V gt + Vety > Vig+ Vo
Proof: Arguing as above this is equivalent to

Vagd + Vgt > Vg + Vi,
which is just (6).
Subcase 3
Show
Vistt + Vatiar + Varg + Ve > Vig + Vg
Proof: Since

Vistr + Vartgr + Vg + Vi = Vst +2Voar + Vo + Veg> Vistt + Virrg + Vg

we need only prove:
Vistt + Vg + Vee > Vi
which is just inequality (6) again.

&
Fig. 4. The possible locations of orbit 4

The other possibilities follow similarl ; i
‘ s ‘ arly.  Hence, this part of the proof i
complete. Although we have not considered it specifically, ifis clear froni Fig 45
that the same method of proof even works if (r,), = (7a)g- o

Case 2. (rs),> (ra)y or 1y < 1,
” In.‘T ;Ius Isection we will prove that there are no minima in
4= ly); that is, given any orbit 4 in this region, there is a neighbori i
) ‘ _ : : s region, > IS righboring orbit 4/
or a mlghbonng configuration of the three orbits 1,2, 4 (ie, g rotati{gm :);Itthn
orbits about their common focus, with each orbit rotated differently), that will

the whole region
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accomplish the transfer from orbit 1 to orbit 2, with less total velocity change.
(Actually the orbits 4’ tend toward orbits of Case 1, but we will not have need

for this fact.)
Method of Procedure

The total change of velocity in going from orbit 4 to orbit 2, with one impulse
at the point where they intersect is:

Ty = (74 + %2 cosf) — (Vg + %pc0s ) + (%g5in [ — xpsing)® (1)

= Vi@a+ #4008 /) — (y5 + #gcos @) + (/22 — (% c0s )? — xysing)? (11')
where f and g are the true anomalies of orbits 4 and 1 respectively. This equation
follows directly from the definitions in WHITTAKER’s Theorem when one resolves
the velocity perpendicular and parallel to the radius vector. We restrict / and g
to be between 0° and 180°. Then the last two termsin (11) always subtract. This
minimizes the T, that satisfies (13) below.

It is of course obvious, but
well to remember, that both
one-impulse transfers 7, and
T, (defined analogously to 7,),
must be optimum one-impulse
transfers with respect to or-
bit 4. Otherwise one could

xr find a neighboring configura-

tion that would decrease the
total velocity change.
Our method of procedure
below will be the following:
First one observes from eq.
(4. %) (11') that we may consider
Ty = Ty(x,, x4cosf) with x,
and g fixed, so that one finds
(875/0x,) x4cos [ =
= ((xysin [ — 2, sin g)[T}) -
“(xl(xgsinf)) - (12)
(When x,cosf is constant,
eq. (13) below is casily sat-
isfied.)

Below we will prove that except for a few exceptional points where the dif-
ference is equal to zero (Points 4, B, C of Figs.7 and 8), that x,sin f — x,sing> 0,
in the following instances: (Subcases I, II, III are defined below).

——yr— = —— g —

.‘-’Zg,y"/

Fig. 5. Subcases I, 11, I1I

Assertion A. In Subcase I, x,sinf — x,sing > 0.

Assertion B. In Subcases II and III at the optimum one-impulse transfer
point between orbits 2 and 4, x,sin [ — x,sing > 0.

Thus, except for the few exceptional points (which will also be discussed),
it follows from (12), and the analogous equation for orbit 1, that one can always
decrease ¥, slightly and this will decrease the total velocity change. This will
prove the stated result for Case 2, with x,/ = %, — &, ¥’ = ¥,

We will have to treat three subcases as shown symbolically in Fig. 5. We will
only discuss the relation between (%4, ¥,) and (x,, ¥,), but the same discussion

The Houmann-Type Transfer 1

will apply to the relation between (x,, ¥

; . 1 ¥y and (x, ;). In Subease IT1 g
in Subcase I and II x, < x,, but in Subcase I ky = ;,32 1+ Vo X< V42 + zsi ;4.
while in Subcase II %, > k,. L s .

Subcase I

In Fig. 6, a plot of %y €OS g Vs x4 cos [ is shown, where ¢ is the true anomaly
of ellipse 2, and f of ellipse 4. For these two ellipses to meet at a distance ¥

one has
11y = ¥o® + va(ryc08 ) = y,2 + y,(xycos /) =k (13)
which means that for fixed x,, y,, x,, ¥, the plot is one of a straight line as shown

in IYig. 6. [Eq. (13) defines £ as a generalization of the % of eq. (2). The  of eq. (2)
from now on will have a subscript.] ‘

8
Ty 510§ = Ty S S
7
8}‘
4
/.za cos g
/ Ty cds F
r
A / <
Fig. 6. x,cosg versus x, cosf in Subcases 1 and II
For Subcase I, we have
Ya® = V%< 3 — 1 %< ¥t 4 Y < Y% + ¥, %, (14)
hence, there exist f; and f, such that
Yo? + Yo %y = ¥4 + Yy %y cos f, 1
Yo® — Yo %3 = ¥4 + ¥y %y C08 f, (15)
Thus the lines in § it x = :
) [.}f' 1[1}e~: 11\;1 anc::;se‘ I ]11t‘. ¥y COS g = + %, and x,cos g = — x,, as
n Iig. 6. Moreover from (13) one has
Xy COS € == (V4/¥y) 24 COS [ + 3,2 — 3,2 (16)

hence the llpes ]}avn positive slope that decreases with increasing y,. This is

also shown in Fig. 6. i o
The hyperbolas in Fig. 6 5 i i

\ S . 6 are the curves x, sin f = 2 20s f)? =

= x,> — (xycos g)% A ¢ ily cl S e i W gl

i 2 COS £)°. Asis easily checked for these hyperbolas: when x, cos g = 0

- ’

(%4 cos f) = + V',é‘i'i"__x"z and the sl i
e a2 > slope of the tangent at t .
e e gent at the points (x,, x,)

~ We now wish to show that each linc of the family of lines in Subcase I only
hits the hyperbola (x, sin f = x, sin g) once in the region — x, < x,cos f < %,
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— %, < %, c0s g < %, ns shown in Fig. 6. To prove this we choose the smallest
y, possible (this is the point y,° in Fig. 5). This will make the slope.of the line i.e.,
(4/95%) maximum; however, below we prove

(4] %9) > (¥a/¥2%) > (¥al¥2) (17)
thus the slope of the tangent to the hyperbola at (x,, x,) and (— x,, — %,) is
greater than that of any line (13) and hence, the lines (13) only hit the hyperbola
once as shown.

Proof of (17): From Fig. 5, and egs. (13) and (14):
(792 — (92%) % — [¥* — ¥4 %] =0

Thus,

¥® = (% + 14 (74 — y4 %) + %,7)/2
2%y = (1 4 (& (2 — ¥4 %0)[%?) + 1)/2

But since x,> %,
¥ 1y > (1 + V& 0af%0)® — & (af%a) + 1)/2 = (L + (2 (alx2) — 1))[2 = yal%.
q.e.d.

In particular this shows that in Subcase I, one has x,sin f > x, sin g, with
equality only at points 4, B, Fig. 6. This completes the discussion of this subcase,
and proves Assertion A.

Subcase Il

From our previous discussion, it is clear that the lines for constant vy, are
as shown in Fig. 6. In particular, since now

Yad— Vi %< Yo — N2 < V' + V%< N+ N % (14)
there exists a cos f,, and cos g, such that
Ya? + Yy %4 COS fy = Yo® — Vo %y (15")
Yo¥ + ¥g %3 COS gy = ¥4® + V4 %4 .
hence the lines (13) now cross the lines x, cos f, = %;, X COSE = — X, S shown
in Fig. 6.
To complete this case, we easily compute
(8T /9%, cos f)* = (yq + x4 cOS [ — Yy — %3 COS 2T, (18)

= (k| Ty) ((1/ys) — (1]yg)) > O (since y, > ¥a)

\Where there is an * it means that the partial derivative is evaluated at
x,8in [ = x,sin g.

Hence, at x,sin /= x,sing, T, is decreasing with =z, cos f; thus, the
optimum one-impulse transfer point will occur to the left of this point or where
x, sin f > x, sin g in Fig. 6. This discussion takes care of Subcase I1, Assertion B
except at the point C of Fig. 6.

Subcase 111

Here the Figure looks like Fig. 7; that is, since x, > x,, the hyperbolas have
changed their orientation, and inequality (17) now reads v,0(%, < ¥4/%4

Now when (87 ,/dx, cos f)* > 0, and the optimum one-impulse transfer point
is to the left of the point x, sin / = x, sin g you still end up in the region where
xgsin f > xysing.  This completes the discussion of Subcase III, Assertion B.

Thus, except for the discussion of the exceptional points 4, B, C, we have
carried out our program as stated at the beginning of Case 2, and proved Asser-
tions A and B.

The Houmann-Uype Transfer Y

Exeeptional Poinis

We now consider the three corner points labeled A, B, C in Figs. 6 and 7.
Actually we also treat the lines going through those points.

Point A 8

Here y,* — y, %3 = ¥,* — 94 %o,

so that orbit 4 has the same ap-
ogee as orbit 2, so that we are really
in Case 1. Hence, this case has al- Z,c05 g

ready been treated. (See discussion
at end of Case 1.)

Point B

Point B when x,< x, can be z, cost
treated as an example of Subcase 11,
(in the limit as sin/->0). (See /
eq. (18).) Thus, by the reasoning
of that Subcase, the minimum trans-
fer point is at a point such as B’
in Fig. 6 and offers no difficulty.
In Subcase 111, with x, > x, point
B does not occur. (See Fig. 7.)

The other possibility for the oc-
currence of a point Bis when x, = x,.
That example is shown in Fig. 8. 4 ‘
Actually in this example points A
and B occur on the same line. On
this line (x,, v5) = (%4, ¥4), so both
orbits have the same
apogee. Hence, the
reasoning of Case 1

Ty 5 =X, Sl

Fig. 7. x,cosg versus x, cosf in Subcase III

applies.
Point C
This case is the most
difficult of the three T, cos g

exceptional points to
treat. Here we discuss
the relation of orbit 4 z, cos ¥
with orbit 1 and orbit 2
at the same time. We
begin with the relation
of orbit 4 and 1.
Thus, at a point C
with respect to orbits 1
and 4 one has y,%+
V= fy]l” — v, %,, which
means that the perigee
of orbit 4 is equal to / /
the apogee of orbit 1, 4 c
(see point designated 1

Fig. B. x4 cosg versus x, cosf when x, = x4
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in Fig. 5). Hence, orbit 4 cannot increase its perigee any more or
it will not intersect orbit 1. Since (ra), = (7a);, the combined relationship is
as shown in Fig. 5 with 2, 2 examples of where orbit 2 can be located with
respect to orbits 1 and 4.

As one easily computes

V= Vio+ Vo= 04+ 2) — (n— %) = (Refys) — (0 — %) =

= (VZRfVhy F 1) — (1 — x) (19)
On the other hand, one also easily computes, for arbitrary cos f:
(yq + x4 cos f, xy8in f) = (R]y,, x48inf) = (20)
= (VZR[Vrg+ by, V20kg — B) (b — L) (ky + 1)
with
kyzk=1l,>1,
Thus if
R[yy = ¥y + %4 COS[ > ¥y + ¥y cOS € = K[y, (21)
and
xysin f > x,sing (22)

then as /, increases, first y, + x5, ¥4 + %, cos /, and x,sin / will decrease, and
hence both 1",, and 7', will decrease with them. So even in exceptional Point C
there is a neighboring orbit 4° which will decrease the total velocity change
between orbits 1 and 2, namely one with %' = %, and I’ > [,.

However, although condition (22) is always satisfied at an optimum transfer
point, (21) depends on y, > y, which may or may not be the case. (See Fig. 5.)
Even so the sum of V,, - T, will decrease with increasing /, (hence the orbit 4’
described above will still suffice). This is shown as follows:

. (Vs + Ty)loly = -
= — ko205 + 13)® — (¥4 + %y c08 [ — ¥ — %y c08 )/ T) (k[)2(ky + 1)) +
A4 ((xysinf — xysing)[T,) (3(x, sin f)[dl,) = (23)
== — (kg + o R)Y20ky + 1% — V(T a®) (g + B)* (g — RN 2(Ry + 1) (k= 1) < 0

where

v = (Vg + x4 c08 [ — ¥, — %508 g)[ T,
o] <
This completes the discussion of Case 2 including all subcases and exceptional
points. Hence, there is no relative minimum in this whole region and our proof
is complete.

Conelusion

In this paper we have proved that the HonMANN-type transfer between two
co-planar elliptical orbits is the optimum among all two-impulse transfers. Since
TinG [1] proved that the optimum orbital transfer can always be reduced to a
planar transfer, our result carries over to non co-planar transfer as well.
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