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9. — 8, = 360° = 2xr, For this reason, the artifice of evaluating Eq.
(i-23} for 8, — 6, = = and multiplying the result by 2 is used. Thus
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From the development of Eq. (1-22),
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n

Raising each side of this equation to the ¥ power and then multiplying
both sides by 4/1/u yields
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Substituting this into the time-of-flight expression yields finally,

L (1-24)
"

This equation indicates that the period of an elliptical orbit is com;
pletely determined by the major axis of that orbit. If both sides o
the equation are squared, the result is

IR
T = @r)° a?
m

This is Kepler's third law of planetary mo%ion which states that tiiel
squares of the periods of the planetary orbits are proportional to the
cubes of their respective major axes. Equution.(lf'z-l) fxlso shows t-l}at
the period of an elliptical orbit of major axis 2a is identical to 1ihat- of a
cireular orbit of diameter 2a. It may also be observed .that since a is
related to the energy of the orbit, the periods of all otrblts of the same
sy are the same regardless of their angular momentum. _
el‘?lbi)s informative to apply Eq. (1-24) for the period of’a. sat(e*'lhtcI m
some interesting examples. Consider first an earth satoll‘ltn which 135
been launched so as to have a major axis equal to the distance to the
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moon. This would represent a sort of minimum energy trip around the

moon. The average distance to the moon is about 239,000 miles:
therefore

2a = 0.239 X 10° X 5,280 it
a = 0.631 X 10° ft
Therefore,
o 2ma 2x(0.6: 9)t -
T = b .’r({.] Ml X 100 = 84.0 X 104 sec = 0.7 days

T (1405 X 101

Consider next a satellite having a 24-hr period.

T,
3o LB
“ 2
2 Ul 60)* .05 1=
a® = _(___l_)( ’] xim X_ H U]xlq = 16.7 X 10

2r

a = 2.56 X 10°ft
The major axis is 2a or 5.12 X 10* ft.

If a circular orbit having a 24-hr period were established, the diameter

of ‘this orbit would be ;‘ = (2.56 X 10%)/(20.9 X 10%) or 12!, times the

€

diameter of the earth.

-/'
1.9 MINIMUM-ENERGY INTERPLANETARY TRAJECTORIES l/

The study of satellite trajectories leads naturally to the idea of the
minimum-energy interplanetary trajectories, since these trajectories
are actually sun satellite trajectories. ‘These minimum-energy trajee-
tories which are tangent to the orbit of one planet at perilielion and
tangent to the orbit of another planet at aphelion are known as Hohmann
transfer ellipses. The approximate lower bound of their energy levels
may be obtained from a simplification of the solar system. Thus, all
the orbits of all_planets in the solar system are presumed to liec m the
same plane and to be circular with the sun at the center.  Under these
assumptions the mimmum energy inwerplanetary Trdjectory beiween
the earth and another planet is an elliptical satellite trajectory tangent
at one extreme to the earth’s orbit and at the other extreme to the orbit
of the other planet. Figure 1-24 gives a sketch of this basic idea for
the trajectory between the earth and Mars,

It may be seen that the desired trajectory is ereated in the same way
as the carlier earth satellite trajectories. When being launched from
the earth for a planet farther away from the sun, a spaceship is already
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Fig. 1-24¢ Minimum energy:
Earth to Mars. The small
dotted circles show the rela-
tive positions of the earth and
Mars at the time of launch
from the earth; the small solid
circles show the relative posi-
tions of the earth and Mars at
the time of rendezvous with
Mars.

—_————

at the perigee of the desired orbit. Presuming that the spaceship is
fired to take advantage of the earth’s orbital velocity, the rocket must
then supply the velocity required for the elliptical trajectory plus suffi-
cient velocity to escape the earth.

For a trip to the inner planets, Mercury and Venus, the spaceship,
before launching from the earth, is at the apogee of the desired elliptical
trajectory. In this instance, the rocket would be fired opposite to the
direction of the earth’s orbital travel with sufficient velocity to escape
from the earth and to reduce its velocity so as to create an elliptical
trajectory inside the earth’s orbit. The idea of this trajectory is shown
in Fig. 1-25.

Eorth
-~

Fig. 1-25 Minimum energy: Earth to Venus.
The small dotted circles show the relative
positions of the earth and Venus at the time
of launch from the earth; the small solid circles
show the relative positions of the earth and
Venus at the time of rendezvous with Venus.
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Turning first to the Earth-Mars trajectory, the major axis of the

required ellipse is seen to be the sum of the orbital radii of the carth and
Mars. Therefore

2a
a

(93 + 142) X 10° miles
117.5 X 10° miles

I

From the data of Table 1-1 the value of u for the sun is

8642
we = gurt = 900.0 X 289 5 101 % 5.98: x 108

= 4.69 X 10! ft?/sec?

From the carlier derivations,

N
= T3g
—_— —4.69 X 102 B R
2E = fi7 5 108 X 5,280 —7.59 X 10°
Therefore,
s g 2 X 4.69 X 10
P ! = 92F 2&: — 'Y & A2 I
v + : 7.59 X 10° + 03 X 10° X 5280
or v = 107,300 ft/sec

This is the velocity required at the perigee of the orbit of the space
vehicle. Presuming the launching to be precisely controlled so as to
take full advantage of the earth’s orbital motion the velocity increment
of the rocket is reduced accordingly. The velocity inerement needed
at a great distance from the earth is the difference between this veloeity
and earth’s orbital velocity, 107,300 — 97,800 = 9,500 ft.see. The
velocity increment needed at the surface of the earth may be calculated
from the conservation of energy requirement as follows:

1-~.{2_Ef

E_Qu r
1 - F l'-le_l He
=‘2'(9.000)£ i T Q!-’z -—;:

from which the velocity required at the surface of the earth r is computed
to be

v = 37,900 ft/sec

It is to be noted that by far the largest part of required velocity increment
is that needed to overcome the earth’s gravitational attraction.
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The period of this trajectory is computed from Eq. (1-24) as follows:

2rat _ 2x(117 X 106 X 5,280)% _ g 445 5 10¢ sec
T = #—'h" == _-_'_(4-69 X 10'.'1)!"!
- _Qjﬂ@* = 516 days = 1.4 years
24 X 60 X 60

i . , BE
This is the period of the round trip; the one-way journey would be 258
s j j is is again
Turning now to the Earth-Venus trajectory, the major ax g
the sum of the radii of the two orbits. Thus

2a = (67 + 93) X 10° miles
a = 80 X 10¢ X 5280 = 0.422 X 10 ft
= 400 X 10° . _q1.1 x 100

26 = — 2=~ 5423 X 10°

a
2 X 4.69 X 10°1 _ g4 w108
ot = 2B + 25 = —1L1 X 10° + 5575175 5,280
v = 89.450 ft,’Sec
E

14

L 89,45 R R
;s (8!};45)0 o !'nnh)' - §[ re

the surface of the earth = 37,600 ft/sec

1l

velocity required at

It is to be noted that it requires almost the same velocity i_ncrem’eltlt
to create the trajectory to Venus as it takes to create thf{ tra;ectorr}r hi(:,
Mars, even though the former is a much lower energy trajectory. ool
oceurs because the Venus trajectory represents about 'the Sa‘l'llle cE a:;i-
in energy level as does the Mars trajectory. The period of the ka
Venus trajectory is determined as follows:

2r(0.422 X 102)* = 0.252 X 10® sec = 290 days

= 69 X 1097

The one-way trip would be about 145 flays.
Actual interplanetary trajectories will req
than the idealized trajectories studied here. .
are not coplanar requires that sufﬁcientu\;elocl
j m one plane to another. fiiis entixe
:\1111?1!2;]3: Tc:.y;hfar: discussel:i in connection wit}a earth satelllte.s in ‘(‘1 h:;l::
it was seen that the latitude of the launch site largely determine

i ’s axis. In
minimum tilt of the orbital plane with respect to the earth’s axis.

the same way the plane of the interplanetary vehicle will be essentially

that of the earth’s orbital plane unless a considernbl‘e amount of energy
is used to move the trajectory out of the earth’s orbital plane.

uire somewhat more velocity
The fact that the orbits
ty be available to transfer
This situation is entirely
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1.10 HISTORICAL NOTE

The full import of this chapter cannot be appreciated without recog-
nizing the relation of the trajectories of man-made space vehicles to the
early development of the science of celestinl mechanies. A very brief
review of this history is given in the next few paragraphs.

The scholars of ancient Greece (ca. 600 B.c.) presumed that the earth
was the center of the universe and that the stars were fixed in some
gigantic sphere which revolved around the earth from east to west once
each day. They recognized that certain objects followed the same
general course through the sky but had motions somewhat different
from those of the stars. They recognized these as the planets of the
solar system and, of course, gave special recognition to the moon and
the sun. The motion of the moon and the sun presented little difficulty
since a simple presumption that they traveled at a slightly different
speed from the stars accounted for their special behavior. However,
the planets presented a difficulty since they sometimes went faster than
the stars and sometimes slower. The most widely accepted solution
was that recorded in Ptolemy’s Almagest and known as the Ptolemaic
System. In this system, each planet, in addition to partaking of the
circular motion of the other stars, moved in a circle whose center moved
with the stars. These combinations of large and small circles were
known as epicycles. As observations were refined, the motions of the
planets were seen to be more complex and were accounted for by adding
epicycles on top of epicycles.

The Copernican system was proposed by Nicolas Copernicus in the
first half of the sixteenth century. He showed that a much simpler
and more accurate model of the planetary system resulted if the planets,
including the earth, were assumed to revolve in circular paths about a
stationary sun. For many reasons, including even some of the most
careful observations by the Danish astronomer Tycho Brahe, this
heliocentric system was rejected. It seems that Brahe, toward the end
of the sixteenth century, reasoned that if the earth moved about the
sun, his observation of the stars would demonstrate parallax which
would show an annual variation. In spite of very careful measurement,
however, he could detect no parallax and hence his observations were
offered as scientific proof that the heliocentric system could not be true.
It was many years until the science of photography was sufficiently
developed to detect the parallax of the nearer stars and used, in fact,
to measure their distance. Nonetheless, Brahe made a great contribu-
tion through his careful determinations of the positions of the planets
which he continued over an extended period.

Johannes Kepler, a German astronomer, joined Brahe around the



